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Abstract

This paper examines money demand and the seigniorage-maximizing bt
inflation rates in Chile, with linear error-correction models (ECM) and )
artificial neural network (ANN) methods. The purpose is to approximate

more accurately the “true” underlying non-linear functional forms for

the long-run equilibrium demand for money, to estimate the learning .
process in short-run monthly adjustment of money stocks, and to obtain -
better estimates of the seigniorage-maximizing rates of inflation.

The ANN model shows that there is a high degree of non-linearity in
the long-run demand for money in Chile. and that the seigniorage-maxi-
mizing inflation rates are much lower than the predictions of previous ¥
studies. %

I. Introduction

This paper examines money demand and the seigniorage-maximizing rates of
inflation in Chile, with error-correction models (ECM) and artificial neural net-
work (ANN) methods. The purpose is to approximate more accurately the “true”
underlying non-linear functional forms for the long-run equilibrium demand for
money, to estimate the learning process in short-run monthly adjustment of money
stocks, and to obtain better estimates of the maximal seigniorage that can be

* This paper was written with the support of the Office of Chief Economist, Interamerican Devel- -
opment Bank. Liliana Rojas-Sudrez, Principal Advisor in this office at the time of this research,
provided much of the data and encouragement for this research.




4 REVISTA DE ANALISIS ECONOMICO, VOL. 13, N° 2

extracted by higher long-run rates of inflation. Unlike most previous studies, this
paper explicitly incorporates parallel-market exchange-rate uncertainty in the short-
run demand for money. In contrast with the ECM approach, which shows its
importance, the ANN reveals the importance —indeed dominance— of hidden non-
linearities in the demand for money. Uncertainty per se does not dominate in the
non-linear model.

The use of ANN methods is relatively new in macroeconomics.! As forecast-
ing tools, ANN methods have been used in the field of finance, for predicting
asset prices, and for evaluating credit risk, as non-linear extensions of discrimi-
nant analysis. However, there has been little application, so far, to the analysis of
money demand and monetary policy.> The reason is that ANN models (or archi-
tectures) are usually specified with a large number of parameters. The danger has
been one of “overparameterization” and very poor out-of-sample performance,
even with daily observations spanning many years. However, this paper will
show the comparative advantage of ANN models—parsimoniously specified- over
dynamic linear cointegration and error-correction models, with relatively noisy
monthly data.

The need to approximate the underlying non-linearities in money demand has
been pointed out by Soto (1995). Following Soto (1995), and Arrau, De Gregorio,
Reinhart, and Wickham (1995), assume that the representative household will
maximize an intertemporal utility function:

§HM@Q?:L (1)

subject to the following two constraints, a transactions technology constraint and
a budget constraint:
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where ¢, represents consumption at time t, B the social discount factor, m, real
money at time t, ¢, a transactions or technology shock at time t, b, the stock of
interest bearing bonds at time t-1, r_, the net interest yield on bonds held at time
t-1, m_, the inflation rate at time t-1, and y, the income or payment received at
time t. The first equation in system (2) is the transactions constraint, and the
second is the budget constraint.

The transactions constraint is a non-linear representation of the familiar cash-
n-advance constraint used by Svensson (1985) and Lucas (1984). The exact func-
tional form of the transactions technology in this constraint is a major issue relat-
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ing to the functional form of the money demand function, and the optimal infla-
tion rate.

Guidotti and Vegh (1993) and Lucas (1993), in particular, have pointed out
that the optimality of a zero rate of inflation depends on a constant-returns-to-
scale transactions technology.

In this model, transactions costs increase with higher consumption relative to
money holdings, and fall with higher money holdings relative to consumption.
The budget constraint explicitly incorporates these costs. These higher costs mean
reduced consumption or lower bond or money holdings in time t, relative to time
t-1.

From the first-order conditions of this problem. Soto as well as Arrau, De
Gregorio, Reinhart and Wickham obtained the following relation between the
marginal costs of holding money (in terms of foregone interest) and the marginal
benefits (in terms of lower transactions costs):

ag(™.0,)
¢ _ : (3)

(M) I
Cr

If the function g is well behaved, its inverse exists, and one can thus obtain a

demand for money function in the following familiar from:
m,=h(c,.i,.8,). where h(.)=g(. ) )

As both Soto and Arrau, De Gregorio, Reinhart, and Wickham point out, in
order to obtain a testable specification of the demand for money, explicit utility
and transactions costs functions need to be assumed. The point these authors make
is that in order to obtain linear closed-form solutions for the demand for money,
very restrictive utility and transactions costs functions are required. Soto shows,
for example, that the following constant elasticity of substitution (CES) specifica-
tion for transactions technology:

o-J o/
(™, 9,)= " [K-—— (T )5 ] )
Cr S o
implies the following logarithmic demand for money function:
/ i
lo =¢ +log(c, )-—lo —) (6)
g(m,)=9,+log(c,) pn m«\+s

Soto discusses the problems stressed in recent literature when micro-founda-
tion utility functions were put to work explaining empirical regularities in macro-
economic data. Either the utility functions that “work” do not fit the underlying
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theory, or implausible elasticities of substitution are required to justify the evolu-
tion of aggregate data. Soto concludes that all the departures from simple linear
(or log-linear) closed-form solutions generate “non-linear structures characterized
by thresholds” or “time-dependent behavior on the part of agents” [Soto (1995),
p- 81

Rather than imposing specific functional forms on the utility and transac-
tions-technology functions, this paper will use ANN methods to approximate the
non-linear functional form given in equation (4).2

The alternative to the ANN specification is the linear error-correction model
(ECM). Arrau, De Gregorio, Reinhart, and Wickham assumed a log-linear form
of money demand, and tested for long-run cointegration between real money, a
scale variable, and an opportunity cost variable. To capture financial innovation,
these authors either specified a trend term or a time-varying intercept in the long-
run cointegrating equation. While the use of a stochastic intercept as a proxy for
financial innovation did yield plausible parameter values for the long-run money
demand, this proxy may simply be picking up specification error, given the re-
strictions these authors place on the underlying transactions technology. This paper
shows that the ANN approximation outperforms the ECM model.

Unlike Arrau, De Gregorio, Reinhart, and Wickham, this paper does not at-
tempt to isolate the effects of financial innovation in the demand for money.
Given the history of inflation in Latin America, this paper makes use of GARCH
transformations to capture the effects of uncertainty, and employs the neural net-
work model to model the learning processes in short-run adjustment. While learn-
ing behavior is clearly related to financial innovation, there is no attempt to dis-
tinguish between them.

The relationship of the functional form of money demand and seigniorage
was recently examined by Easterly, Mauro, and Schmidt-Hebbel (1995). Making
use of an intertemporal optimizing model with money and bonds, as well as a
cash-in-advance model, these authors derive a money demand function with a
variable semi-elasticity of substitution:

in(Z)=k+Arn” 7)
y

Following Calvo and Leiderman (1992), they make use of the following measure
of the opportunity cost of holding money:

\ﬁ_uﬁl\
U Py
(8)
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These authors estimate the money demand model in equation (7) with annual
data, for eleven countries, and calculate corresponding seigniorage-maximizing
inflation rates. For Chile, the rate is infinity, both in the “level” and “first-
difference” version of cquation (7), while the corresponding rate for Mexico ranges
between 127 and 227 percent in the level version, and infinity in the first-difference
version, while for Peru, the maximal rate ranges between 127 and 294 in the level
model, and between 333 and 376 percent in the first-difference version.

This study addresses this issue with monthly data, since the appropriate time
horizon for the demand for money is likely to decrease as inflation rises. Sec-
ondly, inflation uncertainty (proxied by the conditional variance of the parallel-
market exchange rate) enters as an additional argument of the demand for money.
This paper estimates both the ECM model and an ANN adaption of an ECM
model, evaluate the performance of the models, and find considerably lower
seigniorage-maximizing rates of inflation under the ANN monthly models than
the corresponding rates found by Easterly, Maure, and Schmidt-Hebbel (1995).

The next section is a discussion of the ECM model and the way it is adapted
for approximation and short-run money demand. Section III is a discussion of the
ECM and ANN results, as well as an analysis of the seigniorage-maximizing
inflation rates implied by the ANN model. The last section concludes.

II. Money Demand with Error-Correction and Neural Network
Approximation

Estimation of the demand for money in developing countries with a history
of high and variable inflation must take into account both inflation and deprecia-
tion as well as the uncertainty associated with inflation and depreciation. Follow-
ing the work by Sweeney (1988), Asilis, Honohan and McNelis (1993), and
McNelis and Rojas-Sudrez (1996), this paper makes use of the GARCH condi-
tional variance of depreciation in the parallel markets as the appropriate proxy
variable for uncertainty of inflation and depreciation (see Bollerslev, 1986). It is
assumed that the parallel-market exchange rate s, in logarithmic terms, follows a
random walk, with a disturbance term € with mean zero and conditional variance

2.
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The econometrically-generated series {G-} in turn serves as an argument in the
short-run money demand function. While the uncertainty proxy, itself a non-linear
transformation of the prediction error of the exchange rate, may not be very
important in linear regression analysis of money demand, the ANN methods cap-
ture the major importance of this variable.

Making use of unit root and cointegration properties, this paper then esti-
mates a long-run money demand equation, in which the log of real money (m-p)

B e < v
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1s a linear function of a scale variable (y) as well as a subset of relevant oppor-
tunity cost variables, the domestic interest rate [i/(1+1)], the foreign interest rate
[i*/(1+1*)], the rate of inflation [r/(1+m)], and the rate of depreciation in the parallel
market for currency, [e/(1+€)] = [As/(1+As)]. By “relevant opportunity cost vari-
ables”, this paper means those variables which have the magnitudes and signs in
agreement with a priori theoretical expectations: the scale variable should have
positive effects, with an elasticity close to unity, and the semi-elasticities associ-
ated with the opportunity cost variables should have negative values:

i + i* + n . £
Ttz N [0 7] s
I+i I+i* I+nm l+¢

m-p=oy+a;y+o; (10)

The short-run demand for money function represents the first difference of the
dependent variable (m-p) as a function of its own lags, the lagged cointegration
vector v estimated from equation (10), the lagged first differences of the arguments
of equation (10), the lagged exchange rate uncertainty proxy, generated by the
GARCH process, and a dummy variable for the December aguinaldo or bonus
payment:

Alm-p) = MFD«E Pty + M,L\_Dwz.._. M».DNF,\Z

I+

z DTIM*\ IviA[-Z— ]+ Al : .
+ tN. . 7_.+ Vi Z.+ ..> TM+R.>.+ '

YT \Ta\ p \~+m\ 61+ ODECEM
where:

NS NS SN SN -
v=(m-p)- +&, v+ + +
(m-p)-[é,+ &y Gt QS+§.+5\+m\ (12)

The parameters of equations (12) and (11) may be estimated sequentially, or as a
non-linear system:

A(m-p), =% B,Am-p),, +8[(m-p)-(ote+ o,y + o+ s Y. )
I+i 1+i* I+r 1+¢€
) .
+27,8y,,+ I, A[— ] T A —1J, (13)
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Estimation of (12) and (11) in a two-step procedure, or non-linear estimation
of equation (13) follows Hendry's general-to-specific approach. A liberal lag length
is chosen, and the model is gradually reduced from the general equation to a
specific equation, as insignificant variables are eliminated from the model.
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The long-run cointegration equation in equation (13), as well as the linear
error-correction mechanism, imply strong restrictions not only about the underly-
ing transactions technology, but alse about the learning process, about the way
economic agents reaction to new information, and correct past “mistakes” and
forecast errors.

The advantages of the artificial neural network estimation, as opposed to lin-
ear or non-linear ECM models, non-linear least squares, or higher-order polyno-
mial approximation, are two-fold: its system of parallel processing, and the use of
the logsigmod function as a representation of learning behavior.

The ANN system is a system of parallel processing, in addition to sequential
processing, in forecasting. Besides the usual input variables x and an output vari-
able y, the artificial neural network makes use of a hidden layer of “neurons”,
which are simply logsigmoid transformations of linear combinations of the inputs.
The neurons or “squashers” of the input variables work in parallel fashion, at-
tempting to produce accurate fits in a contemporaneous parallel way of predicted
outputs to actual outputs. This approach approximates a wide class of functions
more accurately and more efficiently than other methods based on a polynomial,
spline, or trigonometric expansion. .

The most common neural network is the feedforward network, in which each
neuron in the hidden layer is a logsigmoid transformation of a linear combination
of the current variables in the input layer. By contrast, the Elman network is a
logsigmoid transformation of a linear combination of lagged neurons as well as
the current variables in the input layer. The Elman network allows a second struc-
ture for dynamics in the model, beyond the dynamic structure captured by lags in
the input layer.

Estimation of the coefficients of a neural network is by backpropagation. The
weights connecting the inputs to the neurons, and the neurons to the outputs are
first initialized by a random number generator. Then a gradient search method,
which attempts to minimize the sum of squared residuals, updates the “weights”
or coefficients after each pass through the data set until predetermined conver-
gence criteria are met.

The use of the logsigmoid “squashing” function, 1 / [1 + exp(-® x)], where
o is a set of weights attached to the input variables x, yields a “threshold behav-
ior”, which captures economic reactions to news, and learning in the formation of
expectations. At first, changes in the level of the fundamental input variables x
may produce only small changes in the output, since the neuron is not activated,
but as the levels of x reach critical thresholds, the neurons “fire”, and reactions
in the level of y are strong.

The nonlinear threshold effect thus captures economic reactions to news and
learning behavior characterized by “bounded rationality”. At first a small change
in inflation, for example, may have little effect on the demand for money. As the
inflation effect persists or increases, however, the effects on demand for money
may be more pronounced, as the economic agents incorporate the new higher
inflation, through learning, into their longer-term expectations.
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The ANN serves in this paper both as an approximation method (for the
functional form of the long-run money demand), as well as a model of the “learn-
ing” (in the error-correction process for short-run money stock adjustment). The
ANN in money demand is an example of “bounded rationality” in macroeconom-
ics, whereby agents don’t know more than the econometricians about the under-
lying functional forms for transactions technology or utility. As Sargent (1993)
points out, even with the complement —imitation being the sincerest form of flat-
tery— macro-econometricians have not rushed to ANN, since these methods defi-
nitely do not reduce the number of parameters to explain data. Even with the
additional parameters, however, this paper shows that the ANN provides suffi-
cient gains in explanatory power and insight in money demand to justify the in-
creased complexity.

ANN estimation would approximate a more general form of equation (13):

] A
A(m-p),=®(A(m-p),.,[(m-p),,- ¥y, —, ——,—— =) ]
I+i 1+i* ]+m I+¢

Ay DNF\ DNI.N.*I
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More specifically, the ANN strategy for equation (14) consists of two stages, first
by approximating ¥, the non-linéar relation implied by the transactions technology,
through a “sufficiently complex™ feedforward network, and secondly by estimating
@, the short-run learning, error-correction, and adjustment process, through a fairly
simple Elman recurrent networks, taking the output of the first-stage network as
an input into the second-stage network. This paper thus follows a strategy used
by Aliman, Marco and Varetto (1994), who employed a system of interconnected
networks to predict financial distress in Italian firms. The advantage of this
approach is that it significantly reduces computing time and the danger of oscillating
behavior in the parameter estimation of a larger network.

The approximation of the long-run cointegration relation in the above model
¥ is done through the following feedforward system:?

(m-p), =Y+ >,¥ N
i=1

1
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For approximating the long-run cointegration ?:n:oa Y with system (15), one
employs the following adaptation of sequential network construction (SNC),
discussed by Moody and Utans (1995): for the given inpuis x, one starts e<:r. a
network architecture of j* = 2, and gradually increase the number of neurons, j*.
The approach this paper follows thus goes from the simple to the more complex.
Other search algorithms for network selection involve going from more ooi_u_mx
architectures to progressively more simple ones, through gradual reduction of inputs
in sensitivity-based pruning (SBP), or gradual reduction in the number of neurons
in the hidden layer, through “optimal brain damage” (OBD) [Moody and Utans
(1995), p. 277]. .

Most search algorithms for final network selection, such as SNC, SBP, or
OBD, make use of out-of-sample criteria, such as the predictive stochastic com-
plexity criterion (PSC) of Kuan and Liu (1995), based on minimizing the root
mean squared error. In contrast to these approaches, this paper uses :ﬁ _._ﬂ-m.maw_m
Hanan-Quinn information criterion. With this criterion, one seeks to minimize the
sum of squared residuals for a given j*, but one also penalizes oneself for greater
complexity, measured by a larger parameter set. The final network is that which
minimizes the following function:

hqif(j*) = nlog[ssr(j*)] +log[log(n)] k(j*) (16)

where n is the number of observations, and k is the number of parameters {b w
v} in the progressively more complex networks. o .

This paper uses the in-sample Hanan-Quinn criterion because the work is
with a model whose variables are selected by a prior theoretical restrictions. The
goal is not to improve forecasting performance, per se, but rather to obtain coef-
ficient estimates and elasticities implied by the data, consistent with intertemporal
optimization and equilibrium conditions. Neural networks are used to approxi-
mate the underlying functional form of the transactions technology and utility
functions, not to generate the best out-of-sample forecasts. Zm:mﬁmmwnos of the
Hannan-Quinn criterion function serves as a useful section device for the final
network, since it trades-off increased explanatory power of a network architecture
with increased complexity or learning effort. .

The neural network approach to the analysis of cointegration is similar to the
non-linear cointegration analysis of Granger (1996), who shows that it is possible
to introduce wide classes of non-linearity into cointegration, the basic step of
staring with I(1) processes that can be replaced with any form of persistence and
a form of cointegration maintained.[Granger (1996), p. 8].

Once the feedforward network is selected and trained, the cointegration term
or error becomes an argument in the short-run function:

i i* T £

- = - - |(w\ y » ’ ’ -4
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Since equation (17) is a non-linear dynamic model which embodies error-
correction and learning, this paper uses an Elman (1988) recurrent network to
represent this system: i
A(m-p)i=7o+ 2,7, Nus

i=1

S (18)
Z.L.l N+N.=:
i* [
ni= b+ ME@.N: + MM..T Pe-ni
j=1 =1
= [A(m- Py (m-p)yy-,  AY, 1 Al—— ], Al ], ) A[=Z— ], A=5—].,]
2t Py Plii-W,.pBY.s T+i -1 T+i* -1 1+7 -1 I+e -1

Equation system (18) shows a dynamic process in the hidden layer as well as
in the observable layer: the lagged neurons have effects on current neurons. The
Elman network thus allows memory in the hidden-layer as agents learn from past
errors, and thus makes the learning process at once richer and more complex.
Since this network estimates the short-run adjustment, for the sake of parsimony
this paper restricts the number of neurons, I*, to two. Since there are lagged
effects in both the input and hidden layers, this paper limits the number of lagged
input variables to no more than the number of significant lags in the linear error-
correction model, since the lagged neurons may pick up additional dynamic pat-
terns.

For obtaining the seigniorage-maximizing inflation rates for each country,
equation (18) is simulated, until convergence to a long-run steady state, for a
given inflation rate, and the resulting inflation tax, [®/(1+7)] (M/P). The process
is repeated for progressively higher inflation rates, and the long-run inflation and
seigniorage combinations are plotted.

IIL. ECM and ANN Estimation of Money Demand and Seigniorage-Maximizing
Inflation
Tables I through HI contain the GARCH, ECM, and ANN estimates for Chile.

Table I shows that the GARCH coefficients for the parallel market exchange
rate are significant. Moreover the GARCH process is stable.

TABLE I

GARCH PARAMETERS

Dependent variable: conditional variance

Argument Estimate T-Stat
constant 0.00013 292
e-sq(-1) 0.2261 382
sig(-1) 0.7329 14.53
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Table II, Panel A contains the estimates for the long-run cointegrating vector
for the log level of M1, for the estimation period 1983.03 through 1994.08. The
coefficient of output, y, is close to unity, and the coefficients for the domestic
interest, foreign interest, and inflation opportunity-cost variables are all negative.’

Table II, Panel B gives the ECM estimates for short-run money demand. This
paper presents the coefficient estimates given by the two-step method, and for the
non-linear system method, in which the long-run cointegration coefficients and
the shoit-run ECM coefficients are jointly obtained. This panel shows that the
lagged first differences of the money stock have a negative effect on the current
first difference. The error-correction mechanism is significant and negative, while
the lagged GARCH variable, and the lagged first differences of income and the
interest rate are significant under the two-step estimation but not in the system
estimation. However, both systems show that the December aguinaldo dummy is
significant. Finally, the diagnostics show that the overall explanatory power of
the system method is appreciably greater than the two-step method.

TABLE I

LINEAR ECM MODEL

Panel A: Long-Run Cointegration Vector

Dependent variable: (m-p)

Sample: 83.03 - 94.08

Argument Estimate T-Stat
y 0.9657 6.64
1(1+) -1.0498 351
i*/(1+i") -0.6679 0.48
inf/(1+inf) -1.5576 1.05
constant 3.6548 491
R-SQ 0.69

DW 0.51

Panel B: Error-Correction Estimates

Dependent variable: D(m-p)

Two-Step Method System Estimation

Argument Estimate T-Stat Estimate T-Stat
D{m-p]j(t-1) -0.2099 2.1 -0.2064 2.33
cv(-1) -0.1015 2.12 -0.1095 2.13
y 0.8008 1.58
il(1+1) 1.3944 0.8175
(1) -4.1306 0.6897
inf/(1+infl -40.28 -2.03
constant 4.73 1.76
sig(-1) -1.21 1.98 -0.3913 0.2245
Diy(-1)] -0.2071 1.88 -0.1223 1.22
Di/(1+)](t-1) -0.3753 2.74 -0.2324 1.34
decem 0.1591 53 0.1341 4.39
R-SQ 0.2914 0.3863

bw 224 2.21

SSE 1.1746 1.1048
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Table 1], Panel A contains the diagnostics and the neural network estimates
for the approximation of the cointegrating equation, or long-run money demand,
by the feedforward network.® The diagnostics show, by the Hannan-Quinn crite-
rion, the optimal number of neurons for approximating the long-run function is
seven. The R-squared under the neural network with seven neurons is .81, as
opposed to .69 under the linear model. The second block in Panel A presents the
weight estimates from the inputs to the seven neurons in the hidden layer of the
feedforward network. In relative size, measured by the absolute value of the
weights, the foreign interest rate variable is the most important “stimulus” to the
neurons in the hidden layer, followed by the inflation variable and the domestic
interest variable.” The weight estimates from the hidden layer to the output vari-
able, the log first-difference of money, are all positive.®

Panel B gives the diagnostics and weight estimates for the recurrent Elman
network estimatiori of the short-run ECM money demand. The diagnostics show
that the ANN model outperforms the linear ECM, by the Hannan-Quinn crite-
rion.® The weight estimates from the inputs to the two hidden neurons show that
the error-correction coefficient is negative. The two GARCH coefficients are
opposite in sign, but the dominate one is negative. Similarly, the dominate or
large aguinaldo coefficient is positive, the dominant income coefficient is posi-
tive, and the two interest opportunity cost variables are negative. The last set of
coefficients show that the two hidden neurons have about equal and positive ef-
fects on the output.

Finally, the last row in Panel B shows the partial derivatives computed from
the neural network model, calculated on the basis of the last observation. These
derivatives are calculated numericatly, on the basis of a gradient step.

In terms of relative size, the most important variables are the error-correction
vector, the December aguinaldo, and the interest rate. The non-linear uncertainty
proxy, while highly significant in the linear error-correction model, falls in rela-
tive importance in the neural network model. This phenomenon suggests that the
GARCH uncertainty variable may be a proxy for a hidden non-linearity in the
ECM model.

Figure 1 pictures the long-run inflation and inflation tax combinations found
in steady-state equilibrium generated by the estimated error-correction model for
Chile. The inflation tax measures on the y-axis are based on the initial values of
the money supply, which this paper sets at the mean value of the sample. This
graph shows that the inflation tax revenue reaches a maximum at an inflation rate
of 100 per cent, but at rates higher than this, the inflation tax quickly falls.

While the non-linear model shows that there is an inflation tax “Laffer curve”
for Chile, the relatively high degree of non-linearity shows that the shape of the
Laffer curve is not symmetric. After specific threshold rates of inflation, the
seigniorage quickly drops. The results from Chile suggest that high inflation may
not only be a very inefficient form of taxation, but after a certain point, a self-
defeating form of taxation.
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NEURAL NETWORK ESTIMATION

TABLE I

Dependent Variable: (m-p)

tagnostics and

Neurons: OLS 4
R-SQ 0.693428 0.68597
S$R 3.62774  3.719586
HQIF 185.8021 221.148
Input
Neuron: y
! 2.375904
2 -3.04134
3 5.827766
4 5.23793
5 -0.46111
6 -5.04738
7 -6.01068
Neuron:
1 2
0.626776  2.855637 0.54

uinn Information Criteria

5
0.702836
3.57646
225.3018

V(1+)
-14.5364
-11.157
14.95165.
9.62214
10.11591
-13.8306
-4.54219

3
8891  0.675053

Panel A: Neural Network Estimation for Long-Run Money Demand

6 7
0.776304  0.811376
2.699269  2.293612
196.0383  183.1333

iT(1+i*) inf/(1+inf)

20.32542 -68.6367
-76.6879 -56.4916

67.21106 23.39697
-84.3207 40.8856

100.3114 51.43672

-62.3577 42.8267

-73.8226 59.42897

4 5 6
0.078305  0.595207

7
2.467755

R-SQ 0.3345 0.396725
SSE 1.1048 0.936805
HQIF 31.29628 244818

Neuron: [m-p}(-1) err(-1) sig(-1)
I -1.62864 -1.6508  5.333638
2 1.077017  -1.06926  -18.2404
t Estimates from Hidden Layer to Qutpu
Neuron: i 2
0.268957 0.280999
Partial Derivatives
[m-p}(-1) err(-1) sig(-1)
101112 287.032 -20.2967

decem
1.146784
-0.29233

Panel B: Neural Network Estimates for Short-Run Adjustment
Dependent variable: D(m-p)

Dy(-D]
2242341
-1 83142

decem
202 .4729

D[i/t+i](-1)

nurl{-1) nur2(-1)

0.75546  1.125894 059233

-125303

Dly(-b]
27.71179

-0.19198 -0.12923

Dfi/1+](-1)

-325.076

P
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FIGURE 1

INFLATION LAFFER CURVE
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IV. Policy Implications and Conclusion

The neural network approach to money demand indicates that non-linearity
plays a major role in the demand for money. While this result is not particularly
startling, the evidence from the linear ECM approach puts more weight on an
uncertaintly proxy generated by a GARCH model.

To be sure, the coefficients of an ANN model are not readily interpreted. To
make sense of the estimation results, one must calculate the partial derivatives
based on a numerical gradient method. The ANN model is also more time con-
suming to estimate. However, it does «detect» higher degrees of non-linearity,
and as the analysis of the inflation Laffer curve, paying attention to such non-
linearities may be policy-makers understand the “optimal” rate of inflation may
be much lower than previously expected.

While the results of the ANN are not spectacular, it should be noted that all
of the estimates were obtained from relatively noisy monthly data. While longer-
term quarterly models would surely give better results, more accurate monthly
forecasts in times of high volatility or crisis may be more useful for the practice
of monetary policy. This is where the ANN seems to have the comparative ad-
vantage.
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APPENDIX
ARCHITECTURE OF THE NEURAL NETWORK

The neural network is a specific model of how perceptions are formed, as
people observe input variables such as interest rates, and make decisions about
setting prices, making investments, or trading currency. What this approach adds
to a conventional model of inputs x and outputs y is a hidden layer of unobserved
neurons, n, which are functions of the observed inputs x. The typical model or
“architecture” of a neural network appears in Figure A-1. As one can see, the
neural network links the inputs x to the outputs y through the neurons. The neu-
rons “activate” the impulses of linear combinations of the observed inputs within
the system (as inputs pass to the hidden layer), and pass on as output a linear
combination of one, two, or more nonlinear transformations of the weighted in-
puts. The arrows passing from the inputs x to the hidden layer, and from the
hidden layer to the output represent coefficient values which link inputs to neu-
rons, and neurons to output at each stage of the network:

FIGURE A-1

FF NETWORK

Feedforward Neural Network

Inputs-x Hidden Layer Output-y
neurons - n

What gives the neural network its forecasting power is parallel processing: in
addition to the sequential processing of typical linear systems, in which only
observed inputs are used to predict an observed output. With a neural network,
the neurons process the inputs in a parallel fashion, in order to improve the pre-
dictions.
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The neurons process the input data in two ways: first by forming linear com-
binations of the input data (the third equation in system 1), and then by “squash-
ing * these linear combinations through the logsigmoid function (the second equa-
tion in system 1). Figure A-2 illustrates the operation of the logsigmoid activation
function or “squasher” on a series ranging from -5 to +5.1°

FIGURE A-2

LOGSIGMOID OR LOGISTIC SQUASHER
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The appeal of the logsigmoid squasher function comes from its “threshold
behavior”, which characterizes many types of economic responses to changes in
fundamental variables. For example, if interest rates are already very low or very
high, small changes in this rate will have very little effect on investment or money
demand. However, within critical ranges, small changes may signal possibilities
of significant upward or downward movements, so that the response of invest-
ment or money demand may be very pronounced.

An alternative rationale for the logsigmoid function is “learning behavior”. At
very low or very high levels, small upward or downward movements in the inter-
est rate will trigger little response in investment or money-demand behavior. As
interest rates continue to increase, from low levels, or to fall from high levels,
economic decision-makers will gradually “learn” and form expectations about the
future state of policy and the economy. As the interest rate rises to or falls below
a critical threshold level, investment or money demand will start to respond in
significant ways to continuing changes in this rate. Thus, the nonlinear logsigmoid
function captures a threshold response characterizing “bounded rationality™ or a
“learning process” in the formation of expectations.

The following system describes in a more general way the most commonly
used feed-forward network:

MONEY DEMAND AND SEIGNIORAGE-MAXIMIZING INFLATION IN CHILE.. 19

FF NETWORK

i*

V,=Yo+ X YiNu

i=1

_ 1
22. - N + N.::,
\.*
ng =, + Y ix.;
j=1

in which there are j* input variables and i* neurons. The neurons themselves are
logsigmoid functions of linear combinations of the input data.

An alternative “activation function” for the neurcns in a neural network is the
hyperbolic tangent function. It is also known as the “tansig” or “tanh” function.
It squashes the linear combinations of the inputs within the interval [-1,1], rather
than [0,1] in the logsigmoid function. The following figure shows the behavior of
this alternative function:

FIGURE A-3
TANSIG SQUASHER

Tansig Function
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The mathematical representation of the feedforward network with the tansig
activation functions is given by the following system:

FF NET WITH TANSIG SQUASHERS

.;

Yi=Yo* L ViNy
i=1

Na{, +N|a....

za_. - Na.; _ N.a:.
n‘-.

TR =0y + M Wy X1,
=1

One alternative to the pure feedforward network is a feedforward network
with jump connections, in which the inputs x has direct linear links to output vy,
and as links to the output through the hidden-layer of squashed functions. Figure
A-4 pictures a feedforward jump connection network with three inputs, one hid-
den layer, and two neurons (j* =3, i* =2):

FIGURE A-4

FF NET WITH JUMP CONNECTIONS

Feedforward Neural Network
with Jump Connections
Inputs Hidden Layer Output
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The mathematical representation of the network in Figure A-4 , for logsigmoid
activation functions, is given by the following system:

FF NET WITH JUMP CONNECTIONS

i*

t\-.
Y=Yt LYNuit X \w\.ki
=1 =1

_ 1
1+ N.:i
j*

n;=a, + M Wij Xy, j
j=1

2 ni

Note that the feedforward network with the jump connections increases the
number of parameters in the network by j*, the number of inputs.

The advantage of the feedforward network with jump connections is that it
nests the pure linear model as well as the feedforward neural network. If the
underlying relationship between the inputs and the output is a pure linear one,
than only the direct jump connectors, given by the coefficients {B}, are signifi-
cant. However, if the true relationship is a complex nonlinear one, m:o: we would
expect that the coefficient sets ?&? {7} would be highly significant, while the
coefficient set { .@.V would be relatively insignificant. Finally, if the underlying
relationship betwéen {x,y} can be decomposed into linear and non-linear compo-
nents, then we would expect all three sets of coefficients, hnﬁ. {7} and { .@.w to
be significant.

Another commonly vsed neural architecture is the Elman “recurrent” network.
This network allows the neurons to depend not only on the input variables x, but
also on their own lagged values. Thus the Elman network builds in “memory”
into the evolution of the neurons.

This type of network is similar to the commonly used moving average (MA)
process in time series analysis. In the MA process, the dependent variable y is a
function of observed inputs x as well as current and lagged values of an unob-
served disturbance term or random shock, €. Thus, a g-th order MA procress has
agruments, €, £, ... &_,. In a similar fashion, the Elman network makes use of
lagged as well as current values of unobserved neurons. In the estimation of both
Elman networks and MA processes, it is necessary to use a multi-step estimation
procedure: one has initializes the vector of lagged neurons or disturbance terms
with arbitrary values in order to obtain parameter values, and the one recalculates
the vector of lagged neurons or disturbance terms and re-estimates the parameter
values. The process continues until convergence takes place. Figure A-5 pictures
this system:
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FIGURE A-5

ELMAN RECURRENT NET

Elman Neural Network

Note that the inputs, neurons, and output boxes have time labels for the cur-
rent period, t, or the lagged period,’t-1. The Elman network is a network specific
to data which have a time ‘dimension. The feedforward network, on the other
hand, may be used for cross-section data, which is not dimensioned by time, as
well as time-series data.

The following equation system expresses the Elman network pictured in Fig-

ure A-5:

ELMAN RECURRENT NET

) -
Y=Y+ X ¥iNu

i=1
1

Nu= 1+

*

7
n, = W, +M (07 iy M ViN,.y
j=1 i=1
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Notes

! The appendix contains a brief review of commonly used neural network models or “architectures™.

1 An important exception is Dorsey (1995), who uses ANN-methods to compare the forecasting
performance of alternative money aggregates for inflation.

*  While any non-lincar function g(x) may be approximated by a polynomial expansion, the ANN
achieves greater accuracy with few parameters. This issue 1s treated in greater detail in the next
section.

* Cho and Sargent (1995) have pointed out that any continuous function ¥ can be approximated
arbitrarily well if one chooses j*, the number of hidden neurons, large enough. They also point out
that the feedforward network in system (15) uses only linearly increasingly more parameters, while
polynomial. spline, and trigonometric expansions use parameters that grow exponentially for a
given approximation.

*  For the sake of brevity. this paper does not show the unit root tests for the variables in Panel B.
All are I(1), and the residual is 1(0).

% The network was “trained” for 10,000 “epochs” or iterations through the data set, under each
specification.

7 Itis important to remember that the weight values do not present partial derivatives. Such derivatives
would have to be calculated numerically, based on mean values of the inputs.

8  Computationally, one may assess the statistical significance of the network weights by calculating
the inverse of the Hessian matrix of second-order derivatives. The approximate t-statistics were
highly significant. Similarfy, rough measures of the relative contributions of different inputs to the
determination of the output are based on the relative sizes of the absolute values of the network
weights.

?  The “cointegrating vector” in this estimation is the residual from the ANN estimation of the long-
run equation in Table [I-Panel A. Like the linear cointegrating vector generated by the parameters
of II- A, it is K(0).
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