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Un corte en las transferencias corrientes puede aumentar o disminuir el ahorro. El
ahorro cae si la politica afecta el ingreso corriente, de manera tal que compensa dos
efectos que trabajan en la direccién contraria: la reasignacion de recursos de inversion a
ahorro y la caida en el producto futuro debido a la mener productividad de la mano

de obra ¢ inversidn.
Usando (21a),(22b) v la definicidn de arriba, se resuelve el sistema (39), obteniendo:

ask = 1

ac(1-% — (1+1) [2(1—c)(Q1 —=1IL¥) + tZb]
@ = (1+1) B + ac

1+ —c)(I ~ILE) — ot
dr =

(1 +1) B, +ac

Estos resultados se utilizan para obtener (40a} y (40b}en el texto,
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Abstract:

It is generally assumed that optimal taxes in the case of congestion tend to
reduce output, However, in those cases where congestion is worst, the effect
of the tax may in fact be to increase output. Furthermore, an increase in
demand leads to a fall in output in those cases. Also, the optimal tax may
then appear to be a subsidy, and has led some to conclude that the optimal
tax formula is unsatisfactory. It is satisfactory, once properly interpreted.
Finally, the tax may raise after-tax welfare of resource users,

I. Introduction

It is now generally recognized in the literature that the competitive use of a2 common
property résource résults in an inefficient allocation of resources due to negative extern-
alities which lead to a difference between private and social returns or costs (e.g., Winston
(1985) on transportation, and Gordon (1954} and Scott (1955) on fisheries).

These externalities are of two types: 1) Contemporaneous externalities due to
congestion, and 2) Dynamic externalities due to the impact of current actions of future
costs and revenues. Issues such as road deterioration and expansion or such as growth
and depletion of fish stock have been examined in a number of papers incorporating
dynamic externalities. These papers have derived optimal pricing and fishing rules in the
case of fisheries (e.g., Smith, 1968) and optimal pricing and investment rules in the case
of roads {e.g., Mohring and Harwitz, 1962; Mohring, 1970; Newbery, 1986; Small and
Winston, 1986, and Vickery, 1969).

* 1 would like to thank Arnold Harberger, Anne Krueger and Ramon Lopez for their helpful
comments on an earlier draft, and to Claudio Montenegro for his efficient assistance. The opinions
expressed in this paper are mine and should not be construed as reflecting those of the World
Bank or its affiliated organizations.
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This paper does not deal with dynamic issues. Rather, we focus here on congestion
because we believe that some confusion exists with respect to the concept of congestion
and the implications regarding the impact of policies designed to correct it.

Studies on congestion (e.g., Gordon, Mohring, 1976; Newbery, 1987) have determin-
ed that the optimal output tax equals the difference between the marginal (social) cost
and the average (private) cost, and that the impact of the tax is to reduce cutput. Sur-
prisingly, what has not been realized is that in those cases where congestion is worst
and thus when the optimal tax is actually most important in terms of increasing the
efficiency of resource allocation, the effect of that may in fact be to increase output.
Furthermore, an increase in demand will lead to a fall in output in those cases. And
when producers also consume the product (as in road travel), the tax may raise consumer
after-tax weifare. This occurs when there is a reversal in the relation between the quantity
of input and output. This has been found empirically in the case of road transportation,
but the implications for the impact of taxation on output have not been worked out.

Moreover, in those cases, the optimal tax may appear to be a subsidy. This has led
Newbery (1987) to conclude that the optimal tax formula is unsatisfactory. In fact,
the solution makes perfect sense once it is properly interpreted.

The positive effect of the optimal tax on output is likely to apply to a large number
of cases, including shopping, road and air travel, to the case in international trade known
as “immiserizing growth”, and to large cities. The rest of the paper is organized as follows:
Section 11 develops the conceptual framework and its implications. Section III presents
an application to road transport where we clarify the nature of the cost of travel function
and of optimat taxation. Section IV concludes.

1. Conceptual Framework and Implications

As standard textbooks in economics have taught us, when some factor of production
is fixed, the marginal product of the variable factor will diminish eventually. This leads
to a wedge between the average product AP of the variable factor L, and its marginal
product MP, with AP > MP (though when L is small, MP may be larger or equal to AP).

This wedge does not by itself lead to an inefficient allocation of resources as long as
the fixed factor is owned and the owner maximizes competitive profits. In that case, the
variable factor L will be used up to the point L = L,, where the value of its marginal
product VMP equals its price W.(VMP = W), which is the Pareto efficient solution.
The inefficiency arises when the fixed factor is not owned. In that case, the returns to
the variable factor exhaust the entire product, and the value of the fixed factor is driven
to zero. Each unit of the variable factor obtains the value of its average product VAP,
Varjable factors L will enter the activity up to the point L = Lo where VAP = W, and
since VAP > VMP, the quantity of variable factors used is larger in the case where the
fixed factor is a common property resource (Lo > Li). At L = Lg , VMP < W = VAP,
In the words, factors obtain VAP while their marginal contribution VMP is lower.

The average product AP of the last unit of the variable factor is larger than MP
because part of its average return is obtained by lowering the average return of the in-
tramarginal units. This congestion externality is not internalized when the fixed factor
is not owned (or when its use is not taxed) and is the basis of the inefficiency.

In order to eliminate the inefficiency, two solutions are possible: 1) assigning the
property rights to the resource (and ensuring competitive behavior), or 2) charging and
optimal tax for the use of that resource, where the optimal input tax is VAP - VMP.
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Both policies have the same impact on the allocation of resources, f.¢., the use of variable
factors L falls from Lo to L, (to the point where VMP = W) since the net retumn to
those factors falls from VAP to VMP ({because of the tax or because the owner of the
fixed factor pays varable factors their VMP). Profits from the resource rise from zero
to (VAP —W). L, and the value of the resource rises from zero to the present value of
a flow of such profits.

The literature on common property resources then concludes that output Q = QL)
also falls when variable inputs are used optitnally, ie., that Q; = Q(L1) < Qo = Q{Ly)
(e.g., Gordon, Mohring, 1976). However, there is no 4 priori reason to expect this to be
case. The conclusion that output falls is due to a confusion between a flow concept
(output per unit of time) and a stock concept (the number of variable inputs used at a
moment in time). Congestion is essentially a function of the number of inputs used at a
moment in time rather than of the level of output obtained per unit of time, something
that has not generally been appreciated, especially in the transportation literature.

Simply put, since the relation between output Q and variable inputs L is not mono-
toni¢, a decrease in L may lead to an increase in Q. This will not occur under normal
competitive conditions. However, it could occur in the case of a common property
resource because of the negative congestion externality. Figure 1 illustrates this point.
It shows the relationship between output  per unit of time and the level of variabie
inputs L, as well as total cost vL, where v is the relative price of L measured in units of
Q (v = W/P, with P = price of Q). We assume for simplicity that W(P) is constant and
does not change with L(Q).

In Zone I (L < Lp) the marginal product MP is positive and larger than the average
product AP, ie, 0 < AP < MP. Zone Il (Ly < L < Lp)is the area where 0 << MP < AP
In Zone IIT (L > Lp) MP is negative or Q is falling, i.e., MP < 0 < AP, In terms of mar-
ginal cost MC = W/MP, in Zone II, MC > 0 and MC > AC = W/AP, the average cost.
MC = coat L = Ly, and MC < 0 in Zone III (i.e., output can be increased by reducing
inputs and costs in Zone [II),

FIGURE 1

TC = vL

QL)
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As is well known, when the fixed factor is owned a competitive firm maximizing
profits will always choose L in Zone II, ie, where Ly < L < Lg (unless v is so high
that variable costs are larger than revenue at any positive L, in which case L = 0). For
instance, in Figure 1, the competitive solution is at L = L, where MP = v = W/P, or
VMP =W

However, in the case of a common property resource, VAP = W or PQ/L =W, i.e,
L s at a point where revenue per unit of L equals cost per unit of L, so that profits are
zero. This can occur in Zone II but it can also occur in Zone IT, depending on v. (It
could also occur in Zone 1 but is unstable). As drawn in Figure 1, the use of factors in
that case is L = Lo and occurs in Zone 11. The optimum inpur tax measured in units
of Q is the difference between the average product of Q, /L, and v, and total tax revenue
is Qy -vL,. The inefficiency loss measured in units of Q is also Q, -vL;, and has two
components: the loss in output Q, -Qy, 2nd the increase in costs Q, -vL,.

As drawn in Figure 1, output at the optimum Q, = Q(L,) is Jerger than output
under the common property solution Qg = Q(L,), even though L, > L, . This is due to
the fact that MP < 0 between L, and Lg and dominates the positive MP between Ly
and L, Output Qf at point F equals output Qp, at F°, and AV at F* equals MC at F.
If Qo > QF, then Q) < Qo. If Qo = Qp, then Q; = Qo = Q. If Qo < Qg then Q; >
Qq. Moreover, an increase in demand raises price P and therefore lowers v. This leads
to an increase in L and may lead to 2 fall in output Q in the absence of the optimum
tax (when the common property solution is in or close to Zone D).

In the absence of congestion of other externalities a tax will increase marginal cost
and will lead to a reduction in output. However, in the case of a negative externality,
there are two opposing effects. A tax leads to a reduction in the use of inputs but it also
leads to a reduction in the negative externality, so that the impact on output is am-
biguous and depends on which effect dominates. Cutput per unit of input AP is positive
while the externality MP-AP is negative. If, as drawn in Figure 1, the latter dominates,
then reducing input use through the optimum tax leads to an increase in output.

I[nputs in & congested area such as cars on a road, shoppers in a supermarket or
department store, or such as fishing vessels or fishermen on a lake or tiver, can be thought
of as separate firms in an industry characterized by diseconomies external to the firms
but internal to the industry. Taxation reduces the number of firms but also reduces the
diseconomy, and the impact on industry output depends on which effect dominates.
For instance, reducing the number of supermarket shoppers on a Saturday morning
(say, by charging an entry fee) may very well reduce congestion to the point where total
sales actually increase.

In trade theory, for instance, this applies to the case of immiserizing growth (Bhag-
wati, 1958), where an increase in the quantity of exports may lead to a fall in revenue
because of a fall in price due to monopoly power in the world market. The fall in revenue
occurs if marginal revenue is negative, which can only happen if the optimal tax is not
applied. In terms of Figure 1, with revenue on the vertical axis and quantity of exports
on the horizontal axis, immiserizing growth occurs in Zone I11,

Competitive exporting firms in an industry with monopoly power on the world
market have a “common property resource” which is external to the firms but internal
to the industry. That resource is the monopoly power whose value, when used optimally,
is the present value of a flow equal to the difference between monopoly profits and
competitive profits. In the absence of optimal export taxation, the competitive firms will
drive the value of that resource to zero since none of them can appropriate the resource,
Thus, the case of immiserizing growth can be thought of as a special case of a common
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property resource which it not used optimaily. As mentioned earlier, an alternative to
optimal taxation in that case would be to assign the property rights to the resource. A
government agency or a private firm could be given exclusive rights to export the product,
with the obligation to buy from domestic producers at a competitive price.

The inverse relation (found in Zone III) between input L and output Q in the case of
a congested common property resource may occur in a large number of cases. For instan-
ce, it might oceur in the cases of fisheries, underground water, petroleum and natural
gas, where property rights are not wejl defined because the physical boundary of the na-
tural resource is unknown or its location varies. If the physical boundaries of the resource
could be precisely identified or if those boundaries were stable, the resource noc_.n.do
divided among independent productive units without significant congestion externalities.
This is the case for such natural resources as forests®, coal and other mineral resources.

However, the phenomenon described above is more likely to occur in cases such as
large cities, road transportation, shopping, ports, air travel, visits to a zoo, amusement
park, museum, public pool or beach, and panic escape from, say, a structure on fire,
where space is an essential input in the production process. In those cases, an increase
in the number of “users™ may raise the amount of time needed by sach in order to
complete the activity or may reduce the quality of the activity or both, so that total
output or value of output obtained per unit of time may fall as the number of users
increases.

HII. Road Transportation

We clarify, under very gencral assumptions, the relation between speed m,.now.a out-
put pet unit of time Q and the number of cars (inputs) on a road at a moment in time L.
We then derive the optimal congestion tax and the impact of the iax on output Q and
on consumer welfare, l.e., on the welfare of the road users. We show that when conges-
tion is high it is in the interest of the road users to be taxed, even if they receive none
of the tax proceeds.

We define the output ) per unit of time of a road of given length {and other cha-
racteristics) as the volume or flow of cars passing through that road per unit of time, or
in other words, as the number of trips completed per unit of time. The approach taken
in the literature {e.g., Newbery, 1987; Mohring, 1976; Winston s survey, 1985) in order
to determine the optimal congestion tax usually starts by postulating a relationship
between speed S and flow of cars Q per unit of time:

&y S=1f(Q)

The private unit travel cost AC for a typical car has two components, the vehicle
operating costs and the time costs. Assume, for simplicity, that the operating costs are
constant and equal to a, Then,

(2)  AC=a+Wi,

where W = value of time of the vehicle occupants and t = length of time needed to com-

plete a trip through that road.
The length of time t needed to complete a trip is

(3 t=1/5,
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where speed S is defined in units of “lengths of road per unit of time”. Thus,
(4) AC=a+ W/S

The total cost TC of a flow Q is
(5) TC = QAC

The increase in the total cost due to an increase in the flow Qis:

dAC —f'w
(6) MC = dTC/dQ = AC +o.|ﬁ_mfn>o +oﬁllmu },
dAC
where Q ﬂui is the congestion exterality imposed on the other cars.

A demand for road trips is also generally postulated in the literature as
(N Qp = Qp(P), Qp <0,

where P = the marginal value of a trip on that road.

Supply is given by the AC (which is the private marginal cost) and equilibrium is
at a number of trips Qo where demand equals supply, i.c., where P = AC. This is shown
in Figure 3 where the demand and AC curves are given by Dp and by CoCy, respectively.

The welfare maximizing solution is where the (social) marginal cost equals marginal
value, or MC = P, Assuming £ < 0, MC > AC, and the optimum toll MC — AC > 0.
This is shown, among others, in Winston’s survey. After imposition of the optimum
toll, equilibrium is at Q;, with Q; < Qq (see Figure 3). Thus, studies in the literature
conclude that imposing the optimum toll leads to a reduction in the volumen of cars
from Qo to Q,

On the other hand, a number of empirical studies have estimated the relationship
between volume or output Q and speed S (Wohl and Martin, 1967, Drew 1968, Pignataro,
1973). The relationship 8 = f(Q) (or highway congestion function) has been found to be
as depicted in Figure 2, Its slope changes from negative to positive at Sy where volume
Q = Qg reaches a maximum. It goes through the origin since at 8 = 0, Q = 0. The exact
shape depends on the type of road (number of lanes, etc.) and on the speed limit, Figure
2 also shows the demand curves for travel D, Dy and D;. They exhibit a positive slope
since travel cost is inversely related to speed of travel S (equation 4).

The empirical relationship S(Q) shown in Figure 2 does not comespond to the
assumption that dS/dQ = £ < 0 for all values of S. That negative relation between S and
Q holds for S > Sg. However, for § < Sp, the relationship is positive. The empirical
studies mentioned above have found that for urban roads the turning point (Qp, Sp)
in the S(Q) function (where Q = Qg is at a maximumy), occurs at a speed Sg which is
between 25 and 40 miles per hour. For two-way urban streets in Pennsylvania cities in
1961, Coleman estimated the following relationship: Q/Qg = ~1.9 + 1.02t — 0.09t2,
where time t is measured in minutes per mile. Maximum volume Q=0Qp occurs at t =
5.67 or at Sy, = 10.6 miles per hour.

What is the explanation for the shape of the 8(Q) function? At Q = Q,, there are
two possible speeds: §; and S,. The number of cars Q accessing the road can be thought
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of as the quantity demanded, and the number of cars q leaving the ,..03 as Em.n:m_::w
of travel ‘supplied” by the road. Say demand is D and we are at point A in Figure 2, M
steady state situation at spped 8, with Q1 = q,. Then, the number of cars on the roa

at any moment of time is a constant L = L,, with the number of cars at any moment of

time t, being
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t
®  Ly=Lo+ [°(Q-a)ds

where Lg is the number of cars at time t = 0 and s is a variable of integration.

Assume now that suddenly demand increases from D to D, so that a larger volume
of cars @ > Q, is accesing the road per unit of time. Then the number of cars on the
road will rise to L > L, congestjon will increase and speed will fall to S < S,. The vo-
lume of cars g leaving the road will not increase as much as Q because of the fall in speed.
As long as Q > g, L continues to rise and speed falls. When the number of cars on the
road passes a cerfain level Ly, congestion reaches such a level that the volume of cars
leaving the road falls. As speed falls, AC rises and the quantity demanded Q falls. This
process continues until the excess-demand (Q-q) is eliminated. As drawn in Figure 2, this
occurs at point B where S = §; and Q = Q,%. In the new equilibrium, the number of
carson theroadis Ly > Lg > L,.

Thus, the volume Q1 can be associated with two different speeds, §; and S;, each
of which is associated with a number of cars on the road, L; and L2, respectively, Thus
Sy = 8(Ly) and S; = S(L.). Since speed does not depend uniquely on volume Q, it
follows that volume is not the adequate variable to be used in order to determine speed
and measure the level of congestion and externality.

We argue that speed is determined by the number of cars on the road at any moment
of time L, i.e.,

(% S =S8, =<0

Thus speed depends on the stock of cars L on the road at any moment in time, and
not on the flow of cars Q passing through that road per unit of time. Consequently,
costs also depend on L and not on Q (see equation 4).

In steady state, ie,, where L = Q — q = 0 (L = time derivative of L), volume Q is
equal to

(10) Q= Ljt

where t is the length of time needed to complete a trip on that road, and from equation
(3), we have

(11) Q=13

and speed S is thus the steady-state average product Q/L, measured in lengths of road per
unit of time?.
Define € = — dlogS/diogL as the absolute value of the elasticity of S with respect

to L. Equation (11) implies that
(12) dlogQ/dlogl = 1 —¢.

When S > Sg in Figure 2, an increase in L leads to a fall in S and an increase in Q,
ie,¢e<1.AtL=1g,8=3,Q=0Qp anddQ/dL=10,ie,e=1. ForL>Lg,$<Sp
and an increase in L results in a fall in Q(d1/dL < 0), ie., € > 1. In other words, when
L > Lg, an increase in L leads to a fali in speed S which is proportionately larger than the
increase in L, so that the steady-state volume of cars Q passing through that road per
unit of time falls.

NEW FINDINGS IN THE THEORY OF OPTIMAL CONGESTION TAXES 39

The.relation between Q and L is shown in Figure 1, where Q is at 2 maximum at Qg
where L = Lg, i.e., where ¢ = 1. As L increases beyond Lg, output Q falls, i.e, the
marginal product of an additional car on the road is negative because the negative external-
ity (.e., the fall in the speed for all cars resulting in a lower volume of travel Q for the
cars already on the road) dominates the private (average) contribution made by the ad-
ditional car.

1t is interesting to note that when L > Ly (for § < Sg), a rise in demand for travel
results in a fall in the equilibdum volume of travel Q. This can be seen from Figure 2
where the demand curve D, intersects S(Q) from above {from left to right). D; cannot
intersect S(Q) from below because it would then intersect the horizontal axis, implying
positive demand at an infinite cost (at § = 0, AC = <3. Thus, an increase in demand results
in a fall in output.

We can now show that an optimal toll may lead to an increase in the output Q of
the even though the number of cars L falls. An optimal toll which leads to a fall in L
may in fact lead in the new steady state to an increase in Q if before the toll was imposed
€>1,ie,8 <8 and L > Lp. In terms of Figure 2, it implies that we are at, say point
B in the pre-toll case, and after the toll is imposed, D falls to Dy (the demand net of
the congestion toll), and equilibrium is at point W with Q > Q. In terms of Figure 1,
it implies that after the toll, we move from a point such as (Qo, Lo} to point (Q:, Ly).

Equation (6) indicates that the optimal toll T is
(13) T=MC-AC=0Q ( MNJ,

where *=45/dQ.

For L > Lg §< Sg, Q < Qg and f’ >> 0 (see Figure 2). That implies that T < 0,
ie., the optimal tax is a subsidy in the upward-sloping part of the S(Q) curve, Newbery
(1987) states that this result is absurd since the externality is negative and largest in
the upward-sloping portion of the S{(Q) curve. He concludes that the solution for the
optimal toll given by equation (13) is unsatisfactory*.

In fact, the solution makes perfect sense once it is recognized that speed and the
congestion externality depend on the number of cars I on the road at a moment in
time and not on the volume of cars Q per unit of time. Equation (13) indicates that
in the upward-sloping portion of 5(Q), travel Q should be subsidized in order to raise
it and move out of that inefficient area. However, in that portion of the 5(Q) curve,
dQ/dL < 0, i.e., in order to increase Q, L must fall. Consequently, equation (13) implies
that L must be taxed, i.e., a tax must be imposed on the number of cars on the road in
order to reduce it and thus to increase Q. On the other hand, in the downward-sloping
portion of the S(Q) curve, < 0,and T > 0, e, Q is taxed, and since dQ/dL > 0, that
impties a tax on L. Thus, in both cases, L is taxed and will fall.

From equations (13) and (5),

_ Q(—8' w/s?)
9 T =-"3qnr

2 0 <> dQfdL=0,

and equation (14) shows that the sign of T equals that of dQ/dL.
After the optimal toll es imposed, the solution (which maximizes welfare) cannot
be in the upward-sloping portion of the S(Q) curve, because in that portion, dQ/dL <0,
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so that L can be reduced with a reduction in costs and an increase in output Q, ie,
welfare can be increased in that portion. Consequently, at the optimum, T > 0.

This is shown in Figure 3, where AC and MC are depicted as functions of Q. Speed
depends on L, so that AC also depends on L. (From equations (4) and (9), AC=12a +
W/S(L)). However, since derand is for road trips Q, AC and MC must be expressed in
units of Q to solve for the pre-toll and post-toll equilibrium. Figure 3 differs from the
traditional figures used, where AC and MC rise with Q (e.g, Mohring, 1976, p. 19),
in that it takes into account the upward-sloping portion of the S(Q) curve shown in
Figure 2.

Since 8’ < 0, AC increases with L. For L < Lg, dQ/dL/ > 0, so that AC increases
with Q. At L = Lg, Q reaches a maximum Qg. For L > Lg, dQ/dL < 0, so that AC
falls withk Q. Thus, AC(Q) bends backward for L > Lg {and S < Sg), The portion of the
AC curve between points Co and C, in Figure 3 corresponds to the downward-sloping
portion of the S(Q) curve where dQ/dL > 0. The MC corresponding to that portion
of the AC curve is positive and larger than AC, as can be seen from equation (6) (since
f* < 0 in that portion of the S(Q) curve). If demand is given by Dy, then equilibrium
is at Q == Qy, and the optimum is at @ = Q,.

For L > Ly, the AC curve slopes back. At L=Lg, Q= Qp and dQ/dL=0(e = 1).
Consequently,

ZOIQHOI&%O a_ tQ=0Qg.ForL> Ly, dQ/dL<
Qo - dL QD| a =\g.or B, o\. 0,

and thus MC < 0.

This also shown in Figure 3, where the nagative portion of the MC curve corresponds
to the backward-bending portion of the AC curve. The optimum can never be on that
portion of the cost curves since the same output Q can be obtained at a lower average
(and therefore lower total) cost.

In the case of a common property resource, the AC curve is the supply curve, We
sre thus in the presence of a backward-bending supply curve. However, in contrast with
the labor supply curve where optimum may be on the backward-bending portion, such a
solution is inefficient in the case of a common property resource.

Else (1981) argued that speed depends on L. However, he did not realize the implica-
tions for the impact of optimal taxation on travel volume Q. He presents a diagram
similar to that of Figure 3. However, he assumes that at Qg, MC is finite and then bends
backward but remains positive, The MC curve he draws has the same shape as the AC
curve, but higher, with MC intersecting the Qp line at 2 point such as C, (see Figure 3).
He then concludes that the optimum couid be on the backward-bending portion of the
cost nm:.mm. As discussed above, welfare is not maximized on that portion of the cost
curves

When demand for iravel is given by D, in Figure 3, equilibrium is at point B with
Q = Q,, and MC < 0 (point G). The optimum is at point E, where Q = Qg > Q. The
demand net of the congestion toll (D, in Figure 2} intersects the AC curve in point H
Thus, imposition of the optimum toll may very well lead to an increase in output or
number of trips Q per unit of time. However, if demand were below the demand curve
going through point F, then optimum output would be below equilibrium output® .

The welfare gained from imposing the optimum tax when demand is D, has three
components: 1) the area below the demand curve between Q) and Qg; 2) the area above
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the negative portion of the MC curve between Q) and Qg; and 3) the area below the
positive portion of the MC curve between Qg and Qg.

As can be seen from Figure 3, an increase in demand beyond Dy leads to a fall in
output Q in the absence of the optimum toll. However, in the presence of the toll, an
increase in demand unambiguously leads to an increase in output.

Figure 3 shows that imposing the optimum toll results in a lower AC when equili-
brium is on the backward-bending portion of the AC curve (compare points H and B).
However, if demand is given by Dy, then the optimum toll actually lowers AC inclusive
of the toll {(compare points E 2nd B). In other words, the reduction in congestion costs
more than compensates for the optimum toll. Thus, the congestion toil leads to an
increase in the welfare of road users (over and above the revenues accruing to the agency
administering the toll}, and they should be in favor of the toll in such a case.

IV. Concluding Comments

In this paper, we have shown that in the case of a common property 1¢source charac-
terized by congestion, the optimum tax may lead to an increase in cutput. Moreover,
an increase in demand may lead to a fall in output in the absence of the optimum tax
but not in the presence of the tax. This applies to road travel, shopping, monopoly
power in international trade (immiserizing growth), and other, and may apply to any
industry characterized by negative economies external to the firms but internal to the
industry.

In the case of road travel, we clarified the relationship between travel cost, the
number of cars on the road at a moment in time (inputs), and the number of trips or
volume of cars per unit of time {output). We showed that imposing the optimum toll
may lead to an increase in the number of trips per unit of time, to a reduction in the
toll-inclusive travel cost, and to an increase in the road users’ weifare. In those cases,
imposing the optimum toll reduces the amount of congestion not only because of a fall
in demand but also because of an increase in the number of trips “supplied” by the road.

Notes:

! In the case of forests, some externalities may still exist. For instance, 2 fire in one part of the
forest can spread to adjacent part.

¥ The increase in average travel cost between points A and B is W/S, — W/S, (se¢ equation 4).

3 in steady-state, density (number of cars per mile) is uniform at any point along the road. Hence,
we can abstract from complications related with dynamic adjustments in density. In what follows,
the analysis deals with comparative statics, and not with the transition from one equilibrium to
another when density varies along the road.

4 Newbery also states that the upward-sloping part of S(Q) is dynamically unstable and will occur
in cases such as bottlenecks (say because of a narrowing of a road). In fact the upward-sloping
portion of S(Q) can represent a stable situation, such as might be caused by a permanent increase
in transport demand on a given road system, or by an increase in demand at certain hours of the
day (rush hour), fn the latter case, the optimal toll will be time-dependent.

s Walters (1968, p- 25) notes that the unit cost curve bends backwards if the density L increases
beyond the point where Q = Qp. However, he analyzes congestion issues only in the upward-
sloping range of the AC curve. Shah also mentions the possibility of a backward-bending AC
curve but, noting that the optimum is in the upward-sloping portion, does not consider the former
in his empirical analysis of optimal taxation.

‘ Foint F in Figure 3 cotresponds to points F and F’ in Figure 1.
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MODELS OF WAGE DETERMINATION AND THE INDUSTRY WAGE
STRUCTURE IN URUGUAY*

MARIO ABUHABDA**

Divisién de Estudios
Superintendencia de Administradoras
de Fondos de Pensiones

Abstract:

This paper examines the wage structure in Uruguayan manufacturing during
the period 1968 to 1987. It analyzes the size and stability of intre-industry
wage differentials, and compares these differentials across occupations,
establishment sizes, and across countries, The paper also relates industry wage
levels to industry characteristics. The analyses are used to test the competitive
and the efficiency models of wage determination.

The results confirm the predictions of the efficiency wage model, as wage
differentials are substantial, they persist over time, they are strongly correlat-
ed between white— and blue-collar workers, and to a lesser extent, across
establishment sizes. In addition, some industry characteristics are positively
correlated to wages.

1. Introduction

The study of inter-industry wage differentials has received an increassd attention in
the recent labor market literature. Several papers have been devoted to examine the
pattern of wage differentials in the U.S. economy. They have consistently found a number
of facts: the magnitude of the differentials is considerable; they persist even after con-
trolling for human capital variables; they have been remarkably stable over long periods
of time; and they are similar across countries and occupations.

Competitive and non-competitive models of wage determination give alternative
explanations for the existence of wage differentials. The competitive model explains wage

*  This paper is part of my Ph.D. dissertation at Boston University.

*#* [ am very grateful to Kevin Lang for encouraging and challenging comments. I also thank two
anonymous referees for suggestions to a, previous draft. Any remaining errors are, of course,
my Own.
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