I. Introduction

The idea that the internal efficiency of public enterprises could be enhanced through performance indicators and efficiency audits, like their private sector counterparts, is not new. In the United Kingdom (see Klopping, 1966; p. 202) and the United States (e.g., by most of the public sector), performance indicators have been used for a long time to evaluate managerial performance. However, the use of such indicators in the public sector has been limited, primarily because of the complexity and variability of the services provided. In recent years, however, there has been a growing interest in using performance indicators to evaluate the efficiency of public enterprises. This interest has been driven by the desire to improve the allocation of resources and to increase the accountability of public authorities. The focus of this paper is to discuss the use of performance indicators in public enterprises and to provide guidelines for their implementation.

Abstract

The use of performance indicators in public enterprises has been gaining momentum in recent years. This paper provides an overview of the current state of the art and discusses the challenges and opportunities associated with the use of performance indicators in this context. The authors argue that the implementation of performance indicators in public enterprises requires a thorough understanding of the specific characteristics of these organizations and a careful consideration of the potential benefits and drawbacks of such indicators. The paper concludes with a discussion of the potential implications of the findings for policymakers and practitioners.

Fernando H. Navañas

CONTINGENT INFLUENCES ON PUBLIC ENTERPRISES
ON MANAGEMENT INCENTIVES: PERFORMANCE INDICATORS
AND EFFICIENCY AUDITS IN PUBLIC ENTERPRISES
NO ANALYSIS: INCLUSION PERFORMANCE INDICATORS

The results of the analysis of national economic growth and development in recent years show that the economic growth rate has been relatively stable, with a gradual upward trend. However, there are still some challenges and risks that need to be addressed.

Firstly, the external environment is still volatile, with fluctuations in commodity prices and exchange rates affecting the stability of the national economy. Secondly, the domestic economy is facing challenges in terms of structural adjustments, with the traditional industries facing pressure and new industries needing time to develop. Thirdly, social stability is a concern, with increasing social expectations and demands for better living standards.

To address these challenges, it is important to continue with policies that promote innovation and technological progress, enhance the quality of education and training, and improve the social safety net. Additionally, it is crucial to strengthen international cooperation and partnerships, as the global economy is interconnected and interdependent.

In conclusion, while there are challenges, the national economy is still on a positive trajectory, and with the right policies and strategies, we can continue to promote economic growth and development.
2. The model of the distribution function applied

The model of the distribution function applied in the previous section is the so-called "normal distribution". This distribution is characterized by its bell-shaped curve, which is symmetric around the mean. In the context of financial analysis, it is often used to describe the distribution of returns on investments.

In the case of stock returns, the model of the distribution function is typically used to calculate the probability of observing a particular return. This is done by integrating the probability density function (PDF) of the normal distribution over the range of interest.

The PDF of the normal distribution is given by the following equation:

\[f(x) = \frac{1}{\sqrt{2\pi \sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}} \]

where \(\mu \) is the mean of the distribution, \(\sigma \) is the standard deviation, and \(e \) is the base of the natural logarithm.

To calculate the probability of observing a return within a certain range, we need to calculate the area under the curve of the PDF.

For example, to calculate the probability of observing a return between \(x_1 \) and \(x_2 \), we integrate the PDF from \(x_1 \) to \(x_2 \):

\[P(x_1 \leq X \leq x_2) = \int_{x_1}^{x_2} f(x) \, dx \]

This integral can be solved analytically using the cumulative distribution function (CDF) of the normal distribution, which is given by:

\[F(x) = \frac{1}{2} \left[1 + \text{erf} \left(\frac{x-\mu}{\sigma \sqrt{2}} \right) \right] \]

where \(\text{erf} \) is the error function.

Using the CDF, the probability of observing a return within a certain range can be calculated as:

\[P(x_1 \leq X \leq x_2) = F(x_2) - F(x_1) \]

In practice, this calculation is often performed using statistical software or tables of the standard normal distribution.

In the next section, we will discuss the implications of assuming a normal distribution for stock returns.
0 = \text{npwr}(d^2 : \text{df} : \text{sd} : q) \cdot \frac{[\text{df} \cdot \text{sd}]}{d^2} \cdot n^* \cdot \pi^*

(7)

\{ \text{npwr}(d^2 : \text{df} : \text{sd} : q) \cdot \frac{\pi}{(\pi^*)} \cdot \frac{[\text{df} \cdot \text{sd}]}{d^2} \cdot n^* \cdot \pi^* \cdot \text{npwr}(d^2 : \text{df} : \text{sd} : q) \cdot \frac{\pi}{(\pi^*)} \cdot \frac{[\text{df} \cdot \text{sd}]}{d^2} \cdot n^* \cdot \pi^*

(8)

By changing the condition of the paragraph, we can observe that the expression:

\{ \text{npwr}(d^2 : \text{df} : \text{sd} : q) \cdot \frac{\pi}{(\pi^*)} \cdot \frac{[\text{df} \cdot \text{sd}]}{d^2} \cdot n^* \cdot \pi^* \cdot \text{npwr}(d^2 : \text{df} : \text{sd} : q) \cdot \frac{\pi}{(\pi^*)} \cdot \frac{[\text{df} \cdot \text{sd}]}{d^2} \cdot n^* \cdot \pi^*

(9)

In addition, we observe that the expression:

\{ \text{npwr}(d^2 : \text{df} : \text{sd} : q) \cdot \frac{\pi}{(\pi^*)} \cdot \frac{[\text{df} \cdot \text{sd}]}{d^2} \cdot n^* \cdot \pi^* \cdot \text{npwr}(d^2 : \text{df} : \text{sd} : q) \cdot \frac{\pi}{(\pi^*)} \cdot \frac{[\text{df} \cdot \text{sd}]}{d^2} \cdot n^* \cdot \pi^*

(10)

The function npwr is used to calculate the power of a statistical test. The expression:

\{ \text{npwr}(d^2 : \text{df} : \text{sd} : q) \cdot \frac{\pi}{(\pi^*)} \cdot \frac{[\text{df} \cdot \text{sd}]}{d^2} \cdot n^* \cdot \pi^* \cdot \text{npwr}(d^2 : \text{df} : \text{sd} : q) \cdot \frac{\pi}{(\pi^*)} \cdot \frac{[\text{df} \cdot \text{sd}]}{d^2} \cdot n^* \cdot \pi^*

(11)

Given the previous notation and assumptions, we can write the following expression:

\{ \text{npwr}(d^2 : \text{df} : \text{sd} : q) \cdot \frac{\pi}{(\pi^*)} \cdot \frac{[\text{df} \cdot \text{sd}]}{d^2} \cdot n^* \cdot \pi^* \cdot \text{npwr}(d^2 : \text{df} : \text{sd} : q) \cdot \frac{\pi}{(\pi^*)} \cdot \frac{[\text{df} \cdot \text{sd}]}{d^2} \cdot n^* \cdot \pi^*
\[(\frac{d}{dx})^n f(x) = \frac{d^n}{dx^n} f(x)\]

\[\int (f(x) - (a)^x) \, dx = \frac{1}{n+1} (f(x))^n - \frac{a}{n+1} (a)^n x^n + C\]

\[\int (f(x) - (a)^x)^n \, dx = \frac{1}{n+1} (f(x))^{n+1} - \frac{a}{n+1} (a)^n x^n + C\]

\[\int (f(x) + (a)^x)^n \, dx = \frac{1}{n+1} (f(x))^{n+1} + \frac{a}{n+1} (a)^n x^n + C\]

\[\int (f(x) - (a)^x)^n \, dx = \frac{1}{n+1} (f(x))^{n+1} - \frac{a}{n+1} (a)^n x^n + C\]

\[\int (f(x) + (a)^x)^n \, dx = \frac{1}{n+1} (f(x))^{n+1} + \frac{a}{n+1} (a)^n x^n + C\]

\[\int (f(x) + (a)^x)^n \, dx = \frac{1}{n+1} (f(x))^{n+1} + \frac{a}{n+1} (a)^n x^n + C\]

\[\int (f(x) - (a)^x)^n \, dx = \frac{1}{n+1} (f(x))^{n+1} - \frac{a}{n+1} (a)^n x^n + C\]

\[\int (f(x) + (a)^x)^n \, dx = \frac{1}{n+1} (f(x))^{n+1} + \frac{a}{n+1} (a)^n x^n + C\]
On Neuronal Incentives and Performance Indicators.

\[
\frac{(d^2x}{dt^2}) + \alpha x = f(x) \tag{1a}
\]

and

\[
\frac{dx}{dt} + \beta x = g(x) \tag{1b}
\]

which represent the neuronal dynamics in the absence of external influences. These equations describe the behavior of a neuron over time, where \(x\) represents the membrane potential, \(\alpha\) is a constant representing the strength of the current, \(\beta\) is a constant related to the time constant of the system, and \(f(x)\) and \(g(x)\) are functions that describe the input and output of the neuron, respectively.

The term \(f(x)\) can be expressed as:

\[
f(x) = \sum_{i} w_i x_i + b
\]

where \(w_i\) are the weights of the inputs, \(x_i\) are the input variables, and \(b\) is the bias term.

Similarly, \(g(x)\) can be expressed as:

\[
g(x) = \sum_{j} v_j x_j + c
\]

where \(v_j\) are the weights of the outputs, and \(c\) is the threshold.

The solutions to these equations can be found using various methods, such as analytical methods or numerical simulations. The solutions provide insights into the behavior of neurons under different conditions, which is crucial for understanding neural systems and developing neural networks in machine learning and artificial intelligence.
The context of a noisy information mechanism.

In the context of a noisy information mechanism, the principal designs a budget constraint to elicit an effort level that maximizes her expected profit. This mechanism involves a form of the principal's information, which is then used by the principal to design a budget constraint. The principal's decision is based on the information she receives from the agent, who may act strategically.

Proposition 2: The optimal mechanism for the principal is described as follows:

1. The principal designs a budget constraint that is a function of the agent's effort level.
2. The budget constraint is such that the principal's expected profit is maximized.
3. The agent's effort level is determined by the principal's budget constraint.

For all these mechanisms, the principal's expected profit is maximized when the agent's effort level is equal to the optimal level derived from the budget constraint. The principal's decision is based on the information she receives from the agent, who may act strategically.

Proposition 2: The optimal mechanism for the principal is described as follows:

1. The principal designs a budget constraint that is a function of the agent's effort level.
2. The budget constraint is such that the principal's expected profit is maximized.
3. The agent's effort level is determined by the principal's budget constraint.

For all these mechanisms, the principal's expected profit is maximized when the agent's effort level is equal to the optimal level derived from the budget constraint. The principal's decision is based on the information she receives from the agent, who may act strategically.

Proposition 2: The optimal mechanism for the principal is described as follows:

1. The principal designs a budget constraint that is a function of the agent's effort level.
2. The budget constraint is such that the principal's expected profit is maximized.
3. The agent's effort level is determined by the principal's budget constraint.

For all these mechanisms, the principal's expected profit is maximized when the agent's effort level is equal to the optimal level derived from the budget constraint. The principal's decision is based on the information she receives from the agent, who may act strategically.
\[\lim_{\alpha \to 0} \int \left(\frac{d \varepsilon}{d \varepsilon'} \right)^{\alpha} = \int \left(\frac{d \varepsilon}{d \varepsilon'} \right) \]

\[\text{where} \]

\[\left(d \varepsilon' / d \varepsilon \right)^{\alpha} = \left(\frac{d \varepsilon}{d \varepsilon'} \right)^{\alpha} \]
ESTUÑURA DE MECÁNICA. DISTRIBUCIÓN Y CUESTIONES

índice de contenido

Bases de la economía de mercado: Vol. 2, No. 7 (septiembre 1987)

Jorge Mariscal R.

VÍDEOS / Recursos en línea

ENSAYOS DE MÉTODO. DISTRIBUCIÓN Y CUESTIONES

PRENSA DE NÚCLEOS ECONÓMICOS. VOL. 2, NO. 7 (septiembre 1987)

Jorge Mariscal R.