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Abstract

This paper analyses the effects that income nonresponse has on certain 
well-known inequality coefficients (e.g. Gini, Theil and Atkinson indexes). A 
number of statistical methods have been developed to impute missing values 
of incomes for nonrespondents. By simulating several patterns of income 
nonresponse on actual sub-samples of the Argentinean household survey, 
this essay analyses the effects that different correction methods produce on a 
set of inequality coefficients. It is proved that methods often used to correct 
for nonresponse can introduce important biases on inequality coefficients 
if the patterns of missingness assumed by such methods do not coincide 
with the actual pattern.
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Resumen

Al simular varios patrones de no-respuesta sobre muestras reales de 
la Encuesta Permanente de Hogares de Argentina, el artículo analiza 
los efectos que los métodos de imputación tienen sobre los indicadores 
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de desigualdad frecuentemente utilizados (e.g. Gini, Theil e índices de 
Atkinson). Se demuestra que métodos usualmente utilizados para corregir 
la falta de respuesta en ingresos pueden sesgar de manera importante a los 
indicadores de desigualdad, si los patrones de no-respuesta supuestos por 
dichos métodos no coinciden con los existentes en los datos reales.

Palabras Clave: Encuestas de hogares, imputación de ingresos, medidas 
de desigualdad.

Clasificación JEL: C15, C81, D31.

I. 	 INTRODUCTION

The measurement of income inequality plays a pivotal role in the assessment of 
economic welfare and should play a central role in the design and implementation 
of social policies. A primary input for the measurement of inequality is income data 
coming from household surveys. It is a well-documented fact that in such surveys 
errors occur in the measurement of income (Atkinson et al., 1995, for instance). 
Broadly speaking, two types of errors may exist: sampling errors, which are present 
when sampled households do not represent the population (because of a problem 
with the survey design itself or because a number of sampled households refuse to 
answer any question); and non-sampling errors, that are present when the information 
recorded for households is not accurate. In turn, two types of non-sampling errors 
may coexist. The first one is income underreporting, which occurs when people report 
incomes lower than the actual ones, while the other one is income nonresponse which 
is present whenever individuals refuse to answer income questions. While the former 
is associated with non-labour income, such as capital gains, rents and utilities, the 
latter is primarily associated with incomes from labour. The former can be relatively 
difficult to spot and correct (e.g. individuals earning rents cannot be distinguished 
from the rest, unless they declare that fact), while the latter is relatively easy to detect 
(individuals declare that they have worked but refuse to declare their earnings). The 
effect that income nonresponse has on inequality measurement is the central topic 
of this essay.

When a large proportion of individuals do not answer income questions the 
usefulness of household surveys as a tool to gather relevant information (to estimate 
inequality, for instance) is undermined. In many developed countries (e.g. Finland, 
Sweden) there are other sources of information apart from household surveys (such 
as administrative or tax records) that can be either used to measure inequality or to 
correct household surveys when they contain a significant number of individuals not 
responding about their incomes, so that inequality coefficients obtained from them 
reflect the true distributional situation. But in a large number of countries (mainly 
developing ones) such sources do not exist or are as unreliable as the household 
surveys. Administrative records, such as pension or retirement records, are incomplete, 
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as only a portion of the population receive such benefits, whereas tax records are 
even less reliable, as tax evasion, especially on income taxes, is substantial. In most 
Latin American countries, for example, where income nonresponse rates are well 
above 5% (e.g. Chile, Colombia, Ecuador, Venezuela) and in certain cases are higher 
than 10% (e.g. Argentina, Costa Rica, Honduras, Panama),1 no secondary sources 
are available to correct for such a high nonresponse. In these cases, and given the 
magnitude of this error, the first question that a survey analyst confronts, before any 
attempt to measure inequality is made, is what to do with individuals not responding 
to income questions.

The treatment of missing data in household surveys has been the main topic 
of an extensive literature, not only in economics but also in other social and non-
social sciences (King et al., 2001; Briggs et al., 2003). In this literature, a number of 
statistical methods that correct for item (and, specifically, income) nonresponse have 
been suggested and used. Nevertheless, the specific question of how such methods 
affect inequality measurement has received significantly less (if any) consideration. 
Within the economic literature, comprehensive studies on household surveys, such as 
Deaton (1997), or on income inequality, such as Atkinson and Bourguignon (2000 a) 
and Silber (1999), pay little attention to issues related to the effect that data quality, 
in general, and income nonresponse, in particular, has on inequality inferences. Even 
though it is acknowledged that “observed monetary disposable income may give a 
biased representation of the actual income distribution of (monetary) income in a 
society” because of the existence of errors in the measurement of income (Atkinson 
and Bourguignon, 2000 b, p. 27) no reference is made to how such biases should be 
removed when surveys are the only source of information (which is the case of a large 
number of countries) to estimate inequality correctly. Nor do they try to quantify 
how biased inequality coefficients can be when the data is contaminated by income 
nonresponse.

This essay attempts to fill in this gap by analysing how inequality inferences 
can be affected by the use of different correction methods, under several patterns 
of income missingness (i.e. how nonrespondents are distributed across the income 
distribution). In this respect, the essay quantifies the biases that particular correction 
methods introduce in a number of well-known inequality coefficients (e.g. the Gini 
coefficient, the Theil and Atkinson indexes). Given the lack of secondary sources to 
infer the pattern of missingness in real data (a constraint usually faced in empirical 
studies), a simulation approach is used. The simulations consist in “contaminating” 
samples of workers that fully report their labour incomes from a particular survey, the 
Argentinean Permanent Household Survey. It is thus assumed that, following several 
patterns of nonresponse, a number of workers do not disclose their labour income. 
Then, a number of methods (e.g., deletion of cases with a missing income, OLS and 
two-step regression imputation, hot-deck) are used to impute the missing incomes. 
Because the exact value of workers’ labour incomes is known (as nonresponse 
is simulated from full-information samples), it is possible to compute “true” and 

1	 Feres (1998), Table 3.
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“imputed” inequality coefficients and assess the ability of the different methods to give 
unbiased inequality estimates. As is demonstrated, the use of inadequate methods to 
correct for income nonresponse can eventually produce biased inequality coefficients, 
which magnitude would depend not only on the correction method used but also on 
the inequality coefficient.

A number of caveats applies. First and as was said above, income nonresponse 
is not the only measurement error in surveys and may not be the most serious one in 
terms of its impact on inequality measurement. Income underreporting posses more 
challenges both in terms of its detection and in terms of its actual impact on income-
based statistics. Nonresponse was chosen over underreporting because its correction 
is more frequent and more methods have been used to deal with it. In the simulations 
that follow, it is assumed that income non-response is the only measurement error 
present in the data. Second, it is not the objective of this paper to provide the best 
possible method to correct nonresponse. Instead, the objective is to assess the biases 
on inequality measures that methods frequently used to correct for nonresponse may 
introduce. Third, the discussion that follows should be put into the context of using 
income (or, expenditure) as an imperfect measure of welfare (often the ultimate 
variable of interest). Trying to measure incomes without errors does not overcome 
the issue of incomes being only an imperfect proxy for welfare, a multidimensional 
and complex concept (on this, see Kakwani and Silber, 2008).

The essay is structured as follows. The next Section presents a discussion of the 
effects that different patterns of income nonresponse may have on income inequality 
coefficients. In Section 3 several correction methods commonly found in the empirical 
literature are described. Section 4 explains the simulations in the context of a particular 
survey, the Argentinean Permanent Household Survey, while in Section 5 the results 
of the simulations are presented and discussed. Section 6 presents the conclusions 
of the essay.

II.	 MEASURES OF INEQUALITY AND INCOME NONRESPONSE

There is not a single best inequality coefficient to measure inequality for the simple 
reason that there is not a single dimension or aspect of inequality to be measured. 
One might be interested, for instance, in measuring the maximum income distance 
between the poorest and the richest individuals in a society or, alternatively, one might 
consider as a pertinent inequality dimension the extent of the income dispersion at a 
specific part of the income distribution (e.g. the lower tail). Furthermore, inequality 
coefficients may not only differ in how they consider descriptive aspects of inequality 
(e.g. the distance between the highest and the lowest income), but also in how they 
assess subjective or normative dimensions associated with ethical values and attitudes 
towards inequality itself. Even inequality coefficients that describe objective aspects of 
inequality, such as the well-known Gini coefficient, have attached ethical dimensions 
(Cowell, 2000). The existence of a large number of inequality coefficients is thus 
justified: all of them take a particular aspect of inequality (e.g. the income dispersion 
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at the lower tail of the distribution) and summarise it in a number, suitable to make 
income distribution comparisons possible.

For these reasons and following Champernowne (1974), four different inequality 
measures are used. The first one is the well-known Gini coefficient which, as 
demonstrated by Champernowne (1974), is sensitive to inequality around the mean 
of the income distribution (i.e. “inequality among the less extreme incomes”). The 
second is the Theil index (a member of the family of General Enthropy measures), 
which unlike the Gini coefficient is relatively more sensitive to income dispersion at 
the upper tail of the distribution (Champernowne, 1974). Finally, the third and fourth 
ones are versions of the Atkinson index with inequality-aversion parameters equal 
to 1 (gives an inequality coefficient that is relatively sensitive to inequality at the top 
of the income distribution) and 2 (gives a coefficient relatively sensitive not only to 
dispersion at the lower part of the distribution, but also to the existence of extremely 
low income values).

2.1.	Patterns of Income Nonresponse

Income nonresponse occurs when individuals refuse to answer income questions 
in a survey. The reasons for such a refusal can be varied, although it is generally 
acknowledged that a strong motive is the fear of a negative fiscal reaction (e.g. the loss of 
a subsidy, more taxation) to the potential disclosure of income. The statistical relationship 
between the probability of not responding to income questions and the distribution of 
certain explanatory variables including the actual income of surveyed individuals is 
called the pattern of missingness or the pattern of income nonresponse.

Let us arrange the survey data in a matrix M = {mij}, i =1, …, n; j = 1, …, k, 
where i indexes individual data and j the variables collected for each individual. M 
can be partitioned into two sub-matrices: one full data matrix, Ml, where all variables 
for each individual are fully observed, and a matrix Mn–l, where income data (one of 
the columns of M) is missing for each individual. Additionally, let Q = {qij}, denote a 
n x k matrix, where qij = 1 if mij is observed and zero otherwise. The joint distribution 
of M and Q  takes the general form

	 f f f( , | , ) ( | ) ( | , )M Q M Q Mθθ ββ θθ ββ= 	 (1)

In expression (1), f ( | , )Q M ββ  denotes the distribution of the pattern of missingness, 
and θ and β are vectors of parameters (Weeks, 2001). The literature on nonresponse 
recognises that such a pattern can take three forms:

a)	M issing completely at random (mcar): Ml, the complete-case sub-matrix, is 
formed by a random sub-sample of M. The pattern of missing data cannot be 
predicted from any sample information, as it depends neither on the distribution 
of the missing data nor on the distribution of the observed data. In terms of 
expression (1), f fl n l( | , , ) ( | )Q M M Q− =ββ ββ . In other words, the distribution 
of missing data does not depend on any explanatory variable (e.g. gender, age, 
educational attainments, etc.) nor on the value of the missing variable (income). 
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A mcar pattern corresponds to one where the distribution of missingness is, for 
example, the same for males and females, for the different educational and age 
categories, etc. In this situation, such a distribution could not be predicted from 
the distribution of those variables. As King et al. (2001) point out this situation 
would be equivalent to one in which individuals decide whether to answer income 
questions or not on the basis of the flip of a coin.

b)	M issing at random (mar): “if the conditional probability of the observed pattern 
of missing data, given the missing data and the value of the observed data (i.e., 
f l n l( | , , )Q M M − ββ ), is the same for all possible values of the missing data such that 
f fl n l l( | , , ) ( | , )Q M M Q M− =ββ ββ ” (Weeks, 2001). In other words, the distribution 

of the missing data is conditional only on the distribution of the observed data. 
Thus, the pattern of missingness can be predicted from the distribution of certain 
explanatory variables (e.g. gender, age, educational attainments, etc.) but is 
independent from the actual value of the missing variable (income). In this situation, 
for instance, missingness would be more frequent among males than among 
females, or would be associated with the age of the surveyed individuals.

c)	N on-ignorable (ni) nonresponse: occurs whenever the distribution of Q depends 
on the actual value of the variable with missing cases (e.g. income). In other 
words, the probability of income being missing for a particular individual (e.g. 
the (l + k)th individual) depends on her actual income (yl+k).

Correction methods assume a pattern of missingness in order to impute missing 
incomes. If the pattern assumed by a particular correction method does not coincide 
with the actual one, incomes may be imputed with error. If this is the case, inequality 
coefficients will be estimated with error. In general, the magnitude of the error in 
inequality estimation will depend upon two factors:

1)	 for a given inequality coefficient (e.g. Gini, Theil, Atkinson indexes), the discrepancy 
between the actual pattern of income missingness and the one assumed by the 
correction method;

2)	 for a given correction method, the existing relationship between the aspect of the 
inequality considered by a particular coefficient (as explained in Section 2) and 
the actual pattern of missingness.

The first factor refers to an issue which is usually highlighted by the literature: 
correction methods are relatively effective in producing accurate imputations only 
when the pattern of missingness they assume coincides with the actual one (e.g. 
Greenlees et al., 1982; Little and Rubin, 1987). If this is not the case, any particular 
inequality coefficient (e.g. Gini, Theil, Atkinson indexes), disregarding the aspect 
of inequality they measure, will be estimated with error. The second factor, which 
is related to the specific characteristics of each inequality coefficient, has not been 
addressed before in the literature (as far as the authors know) and highlights the fact 
that inequality coefficients are sensitive to income dispersion at specific parts of the 
distribution (e.g. at the upper tail). If incomes are missing, for instance, at the upper 
tail, any correction method will have a larger impact on coefficients that are sensitive 
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to income dispersion at that specific part of the distribution (e.g. the Theil coefficient). 
Thus, imputation errors introduced by correction methods will be reflected more 
importantly on coefficients that are sensitive to dispersion at the part of the distribution 
where missing incomes are being imputed.

Both factors are equally important and, when ignored, contribute to the distortion 
of the estimation and interpretation of inequality coefficients. In the next Section, 
a number of correction methods are described. Rather than listing all the methods 
proposed in the theoretical literature on missingness, a core of methods commonly 
found in the empirical literature on inequality is presented.

III. 	METHODS TO CORRECT FOR INCOME NONRESPONSE

There are basically two alternative ways that can be used to handle the income 
nonresponse problem: (i) the removal of cases with missing incomes from the sample; 
and (ii) the imputation of an income to them. The first alternative, the deletion of 
cases with missing income, constitutes the simplest way of handling this problem 
and, as such, has been widely used in empirical papers analysing income distribution 
in countries with high nonresponse rates (Altimir and Beccaria, 1999; Gasparini et 
al., 2001, etc.). It consists in removing from the original sample all the cases where 
incomes are missing and analysing the remaining complete-case sub-sample as if it 
were representative of the population.2 The key assumption in this methodology is 
that removed cases are a random sub-sample of the whole sample or, in other words, 
that the pattern of missingness is mcar (as defined in Section 2.1). If, in fact, this is 
the case, the deletion of observations with missing income does not introduce any bias 
in the estimation of inequality coefficients (as is shown in Section 5). Nevertheless, 
even in such a case this method implies the loss of valuable information related to 
other variables (e.g. age, educational attainment, type of job) that are discarded when 
individuals do not respond to income questions. In addition, the reduction of cases 
to only complete ones produces an overestimation of the confidence with which 
inferences are undertaken (King et al., 2001). The performance of deletion is worse 
if the actual pattern of missingness is not mcar. With either mar or, especially, non-
ignorable nonresponse the deletion of cases with missing incomes produces biased 
estimates of income statistics (e.g. mean, variance; Little and Rubin, 1987; King et 
al., 2001) and of specific inequality coefficients (see Section 5).

For the second alternative, the imputation of missing incomes, a number of 
different methods have been proposed. Some of them are parametric (e.g. OLS models 
and two-step regressions, maximum likelihood methods), assuming an underlying 
population function between income (the variable to be imputed) and a number of 
individual characteristics (such as age, gender, educational attainment, etc.), while 

2	T here are two types of deletion of cases with missing income. The first one is the simple removal of 
such cases from the dataset. The second one is the removal of cases with missing incomes and the 
reweighing of the remaining complete-case sub-sample to keep it representative of the population (see 
Little and Rubin, 1987).
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others are non-parametric (e.g. cold-deck, hot-deck). All of them assume a particular 
pattern of missingness in order to make imputations. In most empirical studies, 
assumptions on the pattern of missingness are untestable as there exists only one 
source of information for incomes (e.g. household surveys), so when they are missing 
there is no way of knowing what is the statistical relationship between the probability 
of them being missing and the explanatory variables (including income itself). In the 
literature reviewed only a few papers (Greenlees et al., 1982, for instance) can exactly 
identify the actual pattern of missingness (as the authors have two datasets formed 
by the same households, one where all the variables are fully observed, and the other 
one with missing income cases).

The following are the main imputation methods found in this empirical 
literature:

a)	 Standard OLS models: this method assumes the existence of an underlying linear 
population relationship between income (the variable with missing data) and a 
set of explanatory variables (e.g. gender, age, education, marital status) fully 
observed from individuals. After estimating such a relationship for the complete-
case sub-sample, the missing incomes are imputed using the estimated parameters 
from the complete-case sub-sample.3 This method assumes that the pattern of 
missingness is mar or, in other words, that the distribution of missing incomes is 
conditional on the distribution of data observed for the set of explanatory variables 
and can be predicted from it. When this is the case, standard OLS models produce 
unbiased estimates of the mean income though estimates of the variance are 
downward biased. The reason is that imputations come from a regression to the 
mean and do not reflect the actual variation in the distribution of y given M–1. 
This makes standard OLS models inappropriate for imputing missing incomes 
for the study of inequality, as this precisely requires accurate estimates of income 
dispersion. When the actual pattern of missingness is non-ignorable this method 
produces biased estimates of income mean and variance (Greenlees et al., 1982). 
Inequality coefficients may also be estimated with large errors (see Section 5). 
Despite its limitations, standard OLS regression models have been widely used 
in the empirical literature. For instance, Székely and Hilgert (2007) for 18 Latin 
American countries, Gasparini (1999) and Gasparini and Sosa (1999) in the 
Argentinean case, Larrañaga (1999) for Chile, among others, use standard OLS 
models to impute missing incomes. In all these cases, the authors do not have 
any additional information to infer the actual pattern of missingness, assuming 
that it is mar.

3	L et us partition matrix M (as defined in Section ) into two matrices: M–1, a n x (k – 1) matrix containing 
full information for the variables that form it (all variables but income); and y a n x 1 vector containing 
information on income. Only a submatrix of y (the first l cases) is complete, while the remaining 
(n –  l cases) are missing. Standard OLS models assume that the underlying population function is 
given by y M= +−1θθ ε , where ε is iid( , )0 2σ . Thus, this method consists in using the expectation 
El n l n l( | ) ,y M M− − − −=1 1 θθ  to estimate E El n l n l l

 ( | ) ˆ (.),y M M− − − −=1 1 θ , where , where  indicates that 
the expectation is taken using information available for the complete l cases (Weeks, 2001).
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b)	 Random OLS models: this method is similar to standard OLS models in its 
assumption of the underlying population relationship between income and a set of 
explanatory variables (e.g. gender, age, education, marital status) fully observed 
from individuals. Unlike standard OLS models, random OLS models produce 
better estimates of the variance of the imputed variable (income) by adding a 
stochastic error to the equation imputing incomes. Thus this method estimates a 
regression between income and a set of explanatory variables for the complete-case 
sub-sample (as standard OLS models do). Missing incomes are imputed using the 
estimated parameters in the complete-case regression plus a random error term 
that can be obtained from a normal distribution with a zero mean and a standard 
deviation equal to the standard deviation of the complete-case regression. Thus, 
the (l + 1)th imputed value is

	 ˆ ˆ ˆ,y el l l+ − + += +1 1 1 1M θθ 	

	 where ˆ , ˆel+ ( )1 0∼ N σσ l
2  and ˆ

ˆ
σσ l

2 =
−( )

=
∑

y y

l

i i

i 1

1

 (e.g. standard error of the regression 

estimated on the complete cases). Another option might be to randomly sample 
(with replacement) the observed residuals from the complete-case regression and 
use them as the random error term (Weeks, 2001). Like standard OLS models, 
this method assumes that the pattern of missingness is mar (Little and Rubin, 
1990).

c)	 Hot-deck: there are several variants for imputing missing values using this 
non-parametric method. The simplest one consists in partitioning the data into 
non-overlapping “cells” according to determined characteristics (e.g. gender, age, 
educational level, working sector) and allocating individuals (respondents and non-
respondents) to these cells. After this allocation is made, respondent individuals 
within each cell are chosen randomly and with replacement to “donate” their 
incomes to non-respondents in the same cell. This process can be applied once or 
several times to produce a set of values for each non-respondent. An appealing 
characteristic of this method is that it does not presuppose the existence of any 
underlying population function to impute missing incomes. The pattern of missingness 
assumed is mar, as it is presupposed that the probability of nonresponse may vary 
across cells but not within them. When the actual pattern of missingness is mar 
and the number of donors (i.e. respondent individuals) within each cell is large 
with respect to nonrespondents, the hot-deck gives unbiased estimates of mean 
income and variance (Little and Rubin, 1990). Alternatively, if the actual pattern of 
missingness is non-ignorable, the hot-deck produces biased estimations of mean 
and variance (Greenlees et al., 1982). Different variants of this method are used, 
for instance, to impute missing incomes in the US Current Population Survey and 
by most OECD Statistical Offices (Atkinson et al., 1995). Ruiz-Tagle (1998) uses 
this method to impute missing incomes in the Chilean household survey, Biewen 
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(1999) uses it with German household data and Banks et al. (2002) use a hot-deck 
to impute financial wealth in Great Britain. Some National Statistical Offices use 
variations of the hot-deck. For instance, the Chilean Statistical Office uses the 
cold-deck, which instead of randomly sampling (with replacement) individuals to 
donate their incomes to nonrespondents, imputes the mean value of respondents’ 
incomes within each cell to nonrespondents (Ruiz-Tagle, 1998). Lillard et al. 
(1986) criticises its use in the US Current Population Survey, finding it produces 
biased estimations of mean incomes, whereas Paulin and Ferraro (1994) conclude 
that it is not possible to use hot-deck in the US Consumer Expenditure Survey as 
the samples of this survey are too small for its effective use.

d)	 Two-step regression models: these models assume that incomes are reported 
only when the utility for individuals of answering income questions is positive. 
It is assumed that such an utility level depends on income, determining that the 
probability of answering income questions depends on income itself. In the first step 
of these models, a “reporting-decision equation”, where a dependent dichotomous 
variable (i.e. to report income or not) is regressed on a set of explanatory variables, 
is estimated. In the second step, the decision made as to whether to answer or 
not the income questions is considered to impute incomes to nonrespondents. 
The models are as follows. Incomes are observed only if X2 2ββ + >u2 0,  with a 
probability of Φ( )X2 2ββ , where u N2 0 1∼ ( , ) . There exists an underlying population 
function, relating incomes with a set of explanatory variables, of the form:

	 y u= +X1 1ββ 1

	 where u N1
20∼ ( , )σ . It is also assumed that ( , )u u1 2 ∼bivariate normal ( , , , , ).0 0 12σ ρ   

Thus,

	
E y u| ( )X X X2 2 1 1 2 2ββ ββ ββ+ >( ) = +2

20 ρσ λ

	 where λ φ( ) ( )
( )

X X
X2 2

2 2

2 2
ββ ββ

ββ= Φ .

As it is discussed in Wooldridge (2002), bivariate normality of the errors may 
be an overly restrictive condition and indeed, a normality assumption on u1 is not 
even needed. Two-step regression models are relatively frequent in selection-bias 
contexts (Heckman, 1979) and, in this case, can impute incomes without biases with 
a non-ignorable pattern of missingness. However, special care has to be put into their 
econometric specification, since it has been noticed that they may be highly sensitive to 
model misspecification particularly regarding the division of the total set of covariates 
into those being used in the first step (e.g. the “reporting-decision equation”) and the 
second step (Weeks, 2001). Paulin and Ferraro (1994), for instance, criticise Greenlees 
et al. (1982) findings of a non-ignorable pattern of missingness in a US household 
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survey and attribute such findings to an underspecification of the model. With a suitable 
model specification, they obtain a mar pattern of missingness and find that imputations 
using the two-step regression model produce biased mean income estimates. A number 
of empirical papers use these models to impute missing data. For instance, Biewen 
(1999) uses one to correct German data and Greenlees et al. (1982) and Lillard et al. 
(1986) employ different two-step regression models on US data.

Other correction methods have been proposed but are rarely found in the empirical 
literature due to the specific types of missingness they address. An example is Victoria-
Feser (2000), which analyses the robustness of estimates of parameters of an income 
distribution (e.g. parameters of a Gamma) when income data is contaminated due 
to the truncation of the distribution. In a simulation framework, she considers two 
imputation methods (a classical maximum likelihood method and a modification of 
M-estimator methods) and compares the performance of both methods, finding that 
the M-estimator model performs better.

IV.	 A SIMULATION EXERCISE

Most of the empirical papers which estimate inequality from household survey data 
correct for income nonresponse without considering how the choice of an inadequate 
correction method affects the inequality measurement. The lack of administrative or 
tax data (or any other source of information other than household surveys) hampers 
any attempt to compare the methods’ performances in producing accurate inequality 
estimates. Furthermore, in most of the cases, it is not even possible to be sure whether 
the inequality estimates are under or overestimated. Given the lack of information 
on both the effects of particular correction methods on inequality coefficients and on 
the pattern of missingness followed by the data, a valid option is to estimate bounds 
for the errors in the estimation of such coefficients when the data follows certain 
patterns of missingness. This can be done by using a simulation framework.4 In such 
simulations, an income distribution can be artificially contaminated with a pattern of 
missingness and then corrected by any of the methods described in Section 3. After 
doing that, any inequality coefficient (for instance, those described in Section 2) can be 
estimated over the corrected distribution and compared with the ones calculated over 
the actual distribution. In this way, the effects of using different correction methods 
on the inequality measurement can be examined. This exercise is carried out here.

One option in performing this exercise is to simulate a general or theoretical income 
distribution using a standard density function (e.g., Gamma, Pareto, Singh-Maddala, 
etc.), to contaminate it and to correct it using several correction methods. However, 

4	S imulations or counter-factual exercises are frequent in inequality analysis with contaminated data. 
To the aforementioned paper of Victoria-Feser (2000), one can add Cowell and Victoria-Feser (2001) 
where the authors artificially trim income distributions (at the top or at the bottom of the distribution) 
to test the robustness of partial welfare orderings to the presence of contaminated data at the extremes 
of the distributions. Other papers using income distribution simulations are Champernowne (1974), 
Cowell and Victoria-Feser (1996), Cowell et al. (1999) and Cowell and Flachaire (2002).
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in the context of this exercise, one would have to simulate not only the income 
density function but also the density functions of all the variables related to income 
(e.g. age, gender, educational level) that are used by different correction methods 
(e.g. OLS models, hot-deck) to impute missing incomes. A clear drawback of this 
option is that justifying all the assumptions required to construct the simulation 
exercise may interfere with the simple purpose of assessing the performance of the 
correction methods.

The other option would be to work with actual data on income and other variables 
(e.g. age, gender, educational level), gathered by a specific household survey. On such 
data, several patterns of missingness (e.g. mcar, mar, non-ignorable) can be simulated. 
After doing this, missing incomes can be imputed and inequality coefficients estimated 
using both true and corrected incomes. The main advantage of this option is that it 
allows us to concentrate directly on the relationship among patterns of missingness, 
correction methods and inequality measurement, without worrying about modelling 
issues. This is achieved, however, at the cost of making the analysis and the results 
specific to the type of data used as inputs for these exercises. This cost can be made 
less onerous if several different data sets (i.e. for the same country but for different 
years or for different countries) are used.

In this essay, we follow this last option by using data from the Argentinian 
Permanent Household Survey (henceforth, PHS). This choice is made on several 
grounds. First, the PHS is the only source of information in Argentina which can be 
used to measure income inequality. There are no other sources (e.g. administrative 
data, tax records) which can be used to infer missing incomes, to correct for data 
problems, or to speculate about the actual pattern of missingness existing in the PHS. 
Second, the PHS is one of the surveys with the highest income nonresponse rates 
in Latin America, a region with particularly low standards in statistical information 
(Feres, 1998; Székely and Hilgert, 2007). In this respect, to work on the PHS is to 
consider a survey where, given the magnitude of the nonresponse rate, the missing 
income problem cannot be ignored in the course of studying inequality.

The data used in this exercise are samples of wage earners, who report their labour 
incomes and other relevant variables (e.g. age, gender, educational level, etc). Wage 
earners have been selected (instead of entrepreneurs or the self-employed, for instance) 
as they constitute the largest labour category (approximately 3000 observations per 
survey) and the one less subject to income fluctuations. Two years, 1995 and 1998, 
have been chosen. Both these years were years of relatively high inequality in reported 
incomes and both were years of average income nonresponse. Three patterns of 
missingness have been simulated:

a)	 a mcar process, where all the individuals in the sample have the same probability 
of being chosen as nonrespondent individuals. This process is simulated by 
drawing random numbers from a uniform distribution and assigning them to 
each individual in the sample. Then, if the intention is to consider, for instance, 
a situation where 12% of the sample have missing incomes, individuals with 
random numbers higher or equal to 0.88 have their incomes deleted.
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b)	 a non-ignorable nonresponse process, where only individuals located at the lower 
tail of the actual income distribution face the same probability of being chosen 
as nonrespondent individuals. To generate cases with missing incomes, random 
numbers drawn from a uniform distribution are assigned to each individual at 
the lower tail of the distribution. If, for instance, it is simulated that 12% of the 
cases in the sample have missing incomes, random numbers are drawn for the 
lowest 24% incomes and then half of them are randomly deleted. This procedure 
is adopted to avoid truncating the income distribution.

c)	 a non-ignorable nonresponse process, where only individuals located at the upper 
tail of the actual income distribution face the same probability of being chosen as 
non-reporting individuals. The process of generating cases with missing incomes 
is similar to the one described in b).

Regarding the magnitude of income nonresponse, two scenarios have been 
considered. In the first one, it is assumed that 7% of the population does not answer 
income questions. The second one assumes that such a share is 12%. The actual 
proportion of wage earners not responding to income questions in the PHS during 
the last decade has oscillated between 7% and 12%. Thus, the first scenario can be 
regarded as a low income nonresponse scenario, in the context of the Argentinian 
PHS, while the second can be considered as a high income nonresponse scenario. All 
simulations (i.e. patterns of missingness) in both scenarios have been replicated 100 
times. In each of the 100 rounds of each of the simulations, the data is contaminated 
(deleting incomes of certain individuals, as described) and the different correction 
methods are applied. This means that 2400 sets of imputations have been done for 
each year (100 sets for 4 correction methods, under 3 patterns of missingness for 2 
scenarios). For multiple imputation methods (e.g. hot-deck) this implies producing 
500 complete datasets (if, as is done here, 5 datasets per simulation are produced) 
per year/simulation/scenario.

An important caveat of this simulation exercise is related to the decision of 
assuming that missingness occurs at both ends of the income distribution. It has to 
be recognised that nonresponse patterns existing in actual data are probably more 
complex than these simulated here. However, these simulations illustrate the effects 
that missingness can have on inequality measurement (under two extreme forms of 
missingness). In addition, they show how the choice of a particular correction method 
(and the inequality coefficient) may affect such a measurement.

4.1.	The Correction Methods

Five correction methods, described in Section 3, are used in the simulations. The 
first one is the deletion of cases with missing incomes. No re-weighing of the remaining 
complete-case sub-sample is done after the deletion and inequality coefficients are 
calculated using such a sub-sample (containing only individuals with full information 
on labour incomes).

The second correction method used is a standard OLS regression model. First, 
the following standard OLS regression is estimated from the complete-case sub-
sample:
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where wi is the log of the hourly wages and the independent variables are age, squared 
age, marital status, gender, two dummies for educational attainments (educ1 equal to 
1 if the individual has up to secondary incomplete, and educ2 equal to 1 if she has up 
to tertiary education incomplete), skill category (non-skilled and skilled), tenure at 
work, size of the firm, a dummy for receipt of social benefits and a set of ten dummies 
for different economic sectors (kw), respectively. Missing incomes are imputed using 
the α̂i  parameters estimated running regression (2) to impute labour incomes for 
individuals who are simulated as not reporting them:
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The third correction method used is a random OLS model. As described in 
Section 3, this method is similar to a standard OLS model but it adds a stochastic 
error in the imputation step. Thus, this method estimates equation (2) but imputes 
missing labour incomes using:
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where variables are as in equation (2) and ê j  is a stochastic term obtained as a random 
draw from a N 0,σ̂σ l

2( ) , where σ̂σ l
2  is the variance of the regression error (estimated 

from equation (2)).
The fourth correction method is the hot-deck. The variables used to construct the 

cells to resample from are gender, marital status (single or not), age (four categories: 
15-25, 25-40, 40-65 and over 65) and education (incomplete secondary education, 
incomplete university education and completed university education). It is not possible 
in this exercise to use a larger number of categories because of the reduced sample 
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size. Having more categories would imply having cells with an insufficient number 
of individuals to act as “donors” for missing cases. To partially compensate for this 
limitation, a multiple-imputation hot-deck is adopted. Thus, once cells are constructed, 
sets of five imputed incomes are assigned to each nonrespondent individual. As King et 
al. (2001) explain, “multiple imputation involves imputing m values for each missing 
item and creating m completed data sets. Across these completed data sets, the observed 
values are the same, but the missing values are filled in with different imputations to 
reflect uncertainty levels.” It can be demonstrated that m can be as low as 5 to obtain 
efficient estimators (ibid., p. 56). Each of these five imputations are incomes donated 
by reporting individuals (with replacement) within each cell.

Finally, the fifth correction method considered to impute missing incomes is a 
two-step regression model (à-la-Heckman). The first step estimates a “reporting-
decision equation” over the entire sample of individuals:
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i i
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where z is a dichotomous variable (0 for individuals not reporting income; 1 for 
individuals reporting income) and the explanatory variables that influence such a 
decision are individuals’ age, gender, marital status, educational attainments (educ1 
and educ2, as defined for equation (2)) and the number of hours worked per month 
(hours). The second step estimates a wage equation corrected by the decision of not 
reporting to impute labour incomes for those not reporting it:
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where variables in equation (5) are defined as in equation (2).5 As there are a relatively 
large number of different variables in the two equations, multicollinearity in the second 
stage are avoided. Moreover, by including the number of hours worked in a month in 
the first stage but not in the second, issues of identification are controlled. Theoretically, 
the number of hours worked in a month may affect the decision of reporting income 
(for instance, individuals may want to conceal their incomes if they are high, which is 
conditionally affected by the number of hours worked in a month) without affecting 

5	C onsidering both steps, equation 5 is
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the hourly wage. The parameter showing selection bias (λ in Section 3) is strongly 
significant in all the estimated cases.

After missing labour incomes are imputed (or individuals with missing incomes 
are deleted from the sample) four inequality coefficients are calculated for each 
simulation: the Gini coefficient, the Theil index, and the Atkinson index with e = 1,2.  
Additionally, another measure that considers errors in the imputation process is 
estimated in each case. It is the Mean Absolute Percentage Error (henceforth MAPE) 
and is defined as:

	 MAPE
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where n – l is the number of cases with missing income, yi,true is the true income of 
individual i whose income is simulated as missing and yi,imp is the imputed income 
obtained from the correction method used. This measure would be zero when a method 
imputes exactly the actual income values and would grow as imputed incomes differ 
from the actual ones. It should be noticed that because imputation errors are expressed 
in percentage terms it is likely that MAPE are higher when incomes are missing at 
the lower tail of the distribution. Thus, MAPE should be compared across correction 
methods within each simulated pattern of missingness (e.g. incomes missing at the 
lower tail of the distribution) but not across them.

V.	 THE RESULTS

Tables 1 and 2 present the ratio between inequality coefficients obtained after 
imputing using the correction methods presented in Section 4.1 and the actual inequality 
coefficients, when income data is mcar. The two-step regression is not considered, as 
this method reduces to a standard OLS model when income is mcar (by definition - see 
Section 2.1 - under mcar no variable can explain the decision of not reporting labour 
income). Table 1 shows the first scenario (proportion of income missingness equal to 
7% of the total population), while Table 2 presents the results for the second scenario 
(proportion of income missingness equal to 12% of the total population).

Both tables show that when income is mcar most correction methods provide 
accurate estimations of the several inequality coefficients considered. Statistically, 
only inequality coefficients obtained after applying the standard OLS model are 
significantly lower than the actual ones, whereas inequality coefficients obtained 
after using the random OLS model are significantly higher than the actual ones (in 
all cases except for the Theil coefficient). As explained in Section 3, the standard 
OLS model produces downward-biased estimations of the standard deviation of the 
variable being imputed, which in turn produces biased inequality estimations. A lower 
income standard deviation has an effect on all the inequality coefficients, though 
some of them are more affected than others. For instance, the Theil coefficient (Part 
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TABLE 1

EFfECTS OF NONRESPONSE UNDER MCAR WHEN THE PROPORTION 
OF MISSINGNESS IS 7%

A. Gini coefficient B. Theil coefficient

Method 1995 1998 Method 1995 1998

Deleting 0.9996 1.0002 Deleting 0.9992 1.0008
Simple regression 0.9863 0.9874 Simple regression 0.9697 0.9732
Random regression 1.0055 1.0039 Random regression 1.0007 1.0002
Hotdeck 0.9997 1.0003 Hotdeck 0.9996 1.0009

True distribution 0.3881 0.4103 True distribution 0.2931 0.3119

C. Atkinson index (e = 1) D. Atkinson index (e = 2)

Method 1995 1998 Method 1995 1998

Deleting 0.9994 1.0004 Deleting 0.9992 1.0001
Simple regression 0.9798 0.9828 Simple regression 0.9912 0.9958
Random regression 1.0117 1.0100 Random regression 1.0184 1.0171
Hotdeck 0.9998 1.0005 Hotdeck 1.0001 1.0002

True distribution 0.2329 0.2612 True distribution 0.4229 0.4872

Ratios between inequality measure after imputing and the actual one (true distribution). A value higher 
than one implies an  overestimation of the true inequality level, whereas a value lower than one implies 
an underestimation of this level.
Figures in italics are statistically non-significant (95%).

TABLE 2

EFfECTS OF NONRESPONSE UNDER MCAR WHEN THE PROPORTION 
OF MISSINGNESS IS 12%

A. Gini coefficient B. Theil coefficient

Method 1995 1998 Method 1995 1998

Deleting 1.0001 0.9996 Deleting 0.9998 0.9992
Simple regression 0.9772 0.9779 Simple regression 0.9495 0.9524
Random regression 1.0100 1.0072 Random regression 1.0020 1.0023
Hotdeck 1.0008 0.9994 Hotdeck 1.0023 0.9988

True distribution 0.3881 0.4103 True distribution 0.2931 0.3119

C. Atkinson index (e = 1) D. Atkinson index (e = 2)

Method 1995 1998 Method 1995 1998

Deleting 1.0002 0.9993 Deleting 1.0004 0.9993
Simple regression 0.9670 0.9694 Simple regression 0.9878 0.9905
Random regression 1.0205 1.0172 Random regression 1.0310 1.0275
Hotdeck 1.0017 0.9991 Hotdeck 1.0015 0.9992

True distribution 0.2329 0.2612 True distribution 0.4229 0.4872

Ratios between inequality measure after imputing and the actual one (true distribution). A value higher 
than one implies an overestimation of the true inequality level, whereas a value lower than one implies an 
underestimation of this level.
Figures in italics are statistically non-significant (95%).
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B of Tables 1 and 2) and the Atkinson (e = 1) index (Part C of Tables 1 and 2) are 
more affected than the Gini coefficient and the Atkinson (e = 2) index (Parts A and D 
of Tables 1 and 2, respectively), as income is relatively more dispersed at the upper 
tail of the income distribution, which means that income dispersion in that part of 
the distribution, after imputing with the standard OLS model, will suffer the largest 
underestimation. Accordingly, inequality coefficients which are sensitive to income 
dispersion in that part of the distribution, such as the Theil and the Atkinson (e = 1) 
indexes will be the most affected. Using the random OLS imputation method corrects 
that underestimation.

From the perspective of a policy-maker or an analyst, all these methods produce 
relatively good estimations. Even standard OLS estimates for the Gini are less than 
3% lower than the actual ones (see Table 2, Part A) and for the Theil coefficient are 
around 5% lower than the actual ones (Table 2, Part B). In the case of the Atkinson 
indexes, standard OLS produces estimates which are 3% and 1% lower than the actual 
ones, when e = 1,2, respectively (Table 2, Parts C and D).

Another perspective on the performance of the correction methods is obtained by 
looking at their MAPEs (as defined in expression (6)). Part A of Table 3 shows the 
MAPEs for the first scenario (7% of missingness), while Part B shows the MAPEs 
for the second one (12% of missingness). Because income data is randomly missing 
(from all parts of the distribution) there is no difference across scenarios in the 
imputation errors introduced by the methods and, consequently, MAPEs for every 
method are similar across scenarios. Both scenarios show that deleting produces the 
highest MAPE (around 95%-120%) and that the standard OLS model produces the 
lowest ones (as it minimises the squared imputation errors), of around 47%. Because 

TABLE 3

MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) WHEN DATA IS MCAR

a)   Proportion of income missingness: 7%

Method 1995 1998

Deleting 94.64% 116.83%
Simple regression 46.71% 46.60%
Random regression 72.66% 73.82%
Hotdeck 86.05% 95.20%

b)   Proportion of income missingness: 12%

Method 1995 1998

Deleting 94.09% 117.64%
Simple regression 46.02% 46.94%
Random regression 73.70% 74.60%
Hotdeck 85.49% 96.82%
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the random OLS model incorporates a stochastic term ( ê j  in equation (4)), its MAPE 
is higher than the one for the standard OLS model, though still considerably lower 
than the one for deletion.

5.1.	Incomes Missing at the Lower tail of the Distribution

Tables 4 and 5 show the ratio between inequality coefficients after imputing missing 
incomes and the actual inequality coefficients when incomes are missing only at the 
lower tail of the income distribution. Unlike the mcar case, inequality coefficients 
experience large variations across methods and scenarios (e.g. 7% and 12% of income 
missingness). In general, they are underestimated for all correction methods (described 
in Section 4.1), the two-step regression model being the only exception, which for 
certain inequality coefficients (e.g. the Gini) produces very accurate estimations, while 
for others (e.g. the Atkinson indexes) overestimates true inequality. The random OLS 
model also produces an overestimated Atkinson (e = 2), though the magnitude of the 
overestimation is smaller than in the two-step regression case.

TABLE 4

EfFECTS OF NONRESPONSE WHEN INCOME IS MISSING AT THE LOWER TAIL AND THE 
PROPORTION OF MISSINGNESS IS 7% (*)

A. Gini coefficient B. Theil coefficient

Method 1995 1998 Method 1995 1998

Deleting 0.9519 0.9475 Deleting 0.9209 0.9082
Simple regression 0.9776 0.9811 Simple regression 0.9655 0.9701
Random regression 0.9822 0.9822 Random regression 0.9701 0.9707
Hotdeck 0.9465 0.9459 Hotdeck 0.9123 0.9082
Two-step regression 0.9981 0.9977 Two-step regression 1.0025 1.0011

True distribution 0.3881 0.4103 True distribution 0.2931 0.3119

C. Atkinson index (e = 1) D. Atkinson index (e = 2)

Method 1995 1998 Method 1995 1998

Deleting 0.8944 0.8819 Deleting 0.8696 0.8657
Simple regression 0.9690 0.9720 Simple regression 0.9914 0.9965
Random regression 0.9832 0.9821 Random regression 1.0279 1.0322
Hotdeck 0.8882 0.8818 Hotdeck 0.8681 0.8687
Two-step regression 1.0355 1.0300 Two-step regression 1.1253 1.1118

True distribution 0.2329 0.2612 True distribution 0.4229 0.4872

Ratios between inequality measure after imputing and the actual one (true distribution). A value higher 
than one implies an overestimation of the true inequality level, whereas a value lower than one implies an 
underestimation of this level.
(*) 7% of missingness implies that the missing incomes are located at the lowest 14% of the distribution.
Figures in italics are statistically non-significant (95%).
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Deleting cases with missing incomes is a bad choice when such a missingness 
occurs at the lower tail of the distribution. For instance, deletion produces Gini 
coefficients that are almost 7% below the true ones (Table 5, part A). In the case of 
the Theil coefficient (as explained in Section 2, a measure sensitive to dispersion at 
the top of the distribution), such underestimation can be almost 12% (Table 5, part 
B). Regarding the Atkinson (e = 1,2) indexes, deleting cases with missing income 
produces an underestimation of up to 13%. Similar results are obtained when the 
hot-deck is used.

In general, parametric imputation methods, such as the standard and the random 
OLS models and the two-step regression, produce relatively more accurate estimates of 
inequality coefficients. Imputing missing incomes using a standard OLS model produces 
Gini coefficients that are inferior to the original ones, though the underestimation 
is lower than the one produced by deletion or the hot-deck: when the proportion of 
missingness is 7%, such underestimation is around 2% and increases to 3% when 
the proportion of missingness rises to 12%. In the case of the Theil coefficient, the 
underestimation is around 5%, when the proportion of missingness is 12% (Table 5, 
part B). While the Atkinson (e = 1) index displays similar results to the Theil coefficient, 

TABLE  5

EFfECTS OF NONRESPONSE WHEN INCOME IS MISSING AT THE LOWER TAIL AND THE 
PROPORTION OF MISSINGNESS IS 12% (*)

A. Gini coefficient B. Theil coefficient

Method 1995 1998 Method 1995 1998

Deleting 0.9428 0.9336 Deleting 0.9051 0.8842
Simple regression 0.9644 0.9674 Simple regression 0.9437 0.9476
Random regression 0.9762 0.9735 Random regression 0.9558 0.9534
Hotdeck 0.9338 0.9307 Hotdeck 0.8898 0.8832
Two-step regression 1.0144 1.0102 Two-step regression 1.0288 1.0241

True distribution 0.3881 0.4103 True distribution 0.2931 0.3119

C. Atkinson index (e = 1) D. Atkinson index (e = 2)

Method 1995 1998 Method 1995 1998

Deleting 0.8880 0.8691 Deleting 0.8774 0.8718
Simple regression 0.9541 0.9581 Simple regression 0.9853 0.9965
Random regression 0.9837 0.9792 Random regression 1.0431 1.0426
Hotdeck 0.8783 0.8704 Hotdeck 0.8768 0.8802
Two-step regression 1.0841 1.0786 Two-step regression 1.1894 1.1833

True distribution 0.2329 0.2612 True distribution 0.4229 0.4872

Ratios between inequality measure after imputing and the actual one (true distribution). A value higher 
than one implies an overestimation of the true inequality level, whereas a value lower than one implies an 
underestimation of this level.
(*) 12% of missingness implies that the missing incomes are located at the lowest 24% of the 
distribution.
Figures in italics are statistically non-significant (95%).
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the Atkinson (e = 2) index shows almost no difference from the actual one. The random 
OLS model slightly improves estimations of the Gini, the Theil and the Atkinson 
(e = 1) index. In the case of the two-step regression imputations, the Gini coefficient 
is accurately estimated, while the Theil coefficient shows a maximum overestimation 
of 3% (Table 5, Part B). Atkinson indexes are overestimated in all cases and such 
overestimation can be as high as 18% (Table 5, Part D).

Two important conclusions can be extracted from these results. The first one, 
related to each method’s characteristics, is that parametric methods, such as standard 
and random OLS models or two-step regression models, generally produce more 
accurate inequality coefficients than hot-deck and deletion, when incomes are 
missing at the lower tail of the distribution. Such methods have a higher probability 
of imputing incomes lower than the actual ones than, for instance, the hot-deck. On 
average, the hot-deck imputes lower incomes in only 5% of the cases, whereas that 
figure is close to 30% in the case of the standard OLS model and close to 45% in 
the case of the two-step regression model. To impute an income which is lower than 
the actual one means that any of the four inequality coefficients considered here will 
show a rise in inequality (of different magnitude, according to the coefficient). Thus, 
methods that impute a larger proportion of incomes lower than the actual ones will 
result in higher inequality coefficients. While for some coefficients that are relatively 
sensitive to dispersion at the lower part of the distribution, such as the Atkinson (e = 2), 
the imputation of lower incomes produce strong increases in inequality, eventually 
leading to an overestimation of it (see Part D in Tables 4 and 5), for others, which are 
relatively less sensitive to lower tail dispersion (e.g. the Gini coefficient), this effect 
is less important (see part A in Tables 4 and 5).

The second conclusion, related to each inequality coefficient’s characteristics, 
is that coefficients that are relatively sensitive to income dispersion at the lower tail 
of the distribution show the largest variations in relation to the adoption of different 
correction methods. Let us compare, for instance, the results for the Atkinson (e = 1) 
index (Part C of Tables 4-5) and Atkinson (e = 2) index (Part D of Tables 4-5). The 
results show that the effects of the correction methods are larger in the case of (e = 2). 
For instance, Table 4 shows that while the range of estimates for the Atkinson (e = 1) 
index reaches 15 percentage points (comparing deletion and two-step regression), it 
reaches more than 25 percentage points in the case of (e = 2). This is a consequence 
of the coefficients’ sensitivity to dispersion at the lower tail, which is differently 
affected by the distinct methods. Thus, the use of the hot-deck, for instance, increases 
dispersion at the lower tail and that affects all the coefficients, but it affects relatively 
more the Atkinson (e = 2), which shows the largest variation.

As these simulations show, inequality coefficients can have very different values, 
depending on the methods used to impute missing incomes. Naturally, the assessment 
of the true inequality situation (and related concepts, such as poverty or economic 
welfare) is, under these conditions, a difficult exercise. Inequality evaluations made 
on the basis of the Gini coefficients, for instance, may differ by up to 7 percentage 
points if we delete individuals with missing incomes or impute their incomes using 
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a two-step regression model (Table 5, Part A). For the other inequality coefficients, 
such a discrepancy is even larger. In all cases, the inequality panorama will be highly 
dependent on the correction method applied, with the additional fact that no method 
assures the obtaining of accurate inequality coefficients. But even if it is known that 
a particular method produces accurate estimations of overall inequality extreme 
cautiousness should be exercised, for instance when analysing inequality more deeply 
(i.e. sub-group inequality analysis). The results in Table 6 (MAPEs for all correction 
methods) show that even when global inequality measures may be accurately computed, 
individual incomes are not. For instance, when the two-step regression model produces 
good inequality estimates (e.g. the Gini and the Theil index in Table 4) the imputation 
errors introduced on average and in absolute values are almost 70% of the actual values. 
Can a policy-maker worried by the level of income inequality (or poverty) dismiss the 
fact that some of the lowest incomes are imputed with a substantially higher (or lower) 
income, artificially improving (or worsening) their condition (for instance, by placing 
some of them above the poverty line and, for others, increasing the poverty gap)? Even 
if the overall inequality level is correctly estimated, any social policy aimed at the 
lower income groups will miss a substantial and relevant portion of (nonrespondent) 
individuals because of the particular imputation method chosen.

TABLE 6

MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) WHEN DATA 
IS MISSING AT THE LOWER TAIL

a)   Proportion of income missingness: 7%

Method 1995 1998

Deleting 407.01% 552.50%
Simple regression 103.46% 94.95%
Random regression 132.38% 128.77%
Hotdeck 265.63% 330.52%
Two-step regression 68.29% 68.95%

b)   Proportion of income missingness: 12%

Method 1995 1998

Deleting 305.08% 403.27%
Simple regression 86.10% 83.38%
Random regression 115.27% 116.26%
Hotdeck 200.87% 243.71%
Two-step regression 54.12% 56.77%
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5.2.	Incomes Missing at the Upper Tail of the Distribution

Tables 7 and 8 show that when incomes are missing at the upper tail of the 
distribution, the correction methods considered here produce underestimated 
inequality coefficients in all the cases. Two facts can explain this result. The first one 
is related to the characteristics of income distributions: since income dispersion at 
the upper tail of the distribution is relatively higher than anywhere else in the income 
distribution, correction methods that tend to reduce that dispersion, such as standard 
OLS models, will also reduce inequality coefficients. The second fact is related to 
the simulation exercise undertaken: to have incomes missing at the upper tail of the 
distribution implies that imputed values would tend to be lower than the actual ones, 
as the correction methods applied here (parametric ones, such as the OLS models, or 
non-parametric ones, such as the hot-deck) use respondent incomes, generally lower 
than those missing, as a basis to impute incomes. This, in turn, will determine that 
most inequality coefficients (certainly the ones considered here) will be lower than 
the actual ones. The particular reaction of each inequality coefficient will, again, 
depend on the sensitivity of each coefficient to income dispersion at the upper tail 
of the distribution.

TABLE 7

EFECTS OF NONRESPONSE WHEN INCOME IS MISSING AT THE UPPER TAIL AND THE 
PROPORTION OF MISSINGNESS IS 7% (*)

A. Gini coefficient B. Theil coefficient

Method 1995 1998 Method 1995 1998

Deleting 0.8836 0.8958 Deleting 0.8050 0.8240
Simple regression 0.8820 0.8891 Simple regression 0.7731 0.7887
Random regression 0.9143 0.9253 Random regression 0.8360 0.8647
Hotdeck 0.9277 0.9262 Hotdeck 0.9036 0.8854
Two-step regression 0.9159 0.9076 Two-step regression 0.8228 0.8137

True distribution 0.3881 0.4103 True distribution 0.2931 0.3119

C. Atkinson index (e = 1) D. Atkinson index (e = 2)

Method 1995 1998 Method 1995 1998

Deleting 0.8301 0.8497 Deleting 0.8826 0.9031
Simple regression 0.8216 0.8378 Simple regression 0.8843 0.9032
Random regression 0.8681 0.8879 Random regression 0.9100 0.9274
Hotdeck 0.8965 0.8928 Hotdeck 0.9218 0.9274
Two-step regression 0.8689 0.8627 Two-step regression 0.9174 0.9201

True distribution 0.2329 0.2612 True distribution 0.4229 0.4872

Ratios between inequality measure after imputing and the actual one (true distribution). A value higher than one implies 
an overestimation of the true inequality level, whereas a value lower than one implies an underestimation of this level.
(*) 7% of missingness implies that the missing incomes are located at the highest 14% of the distribution.
Figures in italics are statistically non-significant (95%).
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Correction methods such as the hot-deck, the two-step regression or the random 
OLS model perform better as they introduce relatively more variation in imputed 
incomes than, for instance, the standard OLS model. Table 7 shows that the hot-
deck, for instance, produces the most accurate estimations in all cases. However, it 
still underestimates the Gini coefficient by 7% (see Part A), the Theil coefficient by 
11% (Part B), the Atkinson (e = 1) by 10% (Part C) and the Atkinson (e = 2) by 7% 
(Part D). The random OLS model and the two-step regression both produce similar 
estimates, underestimating the Gini by 9%, the Theil by around 17%, the Atkinson 
(e = 1) by 13% and the Atkinson (e = 2) by 8%. Finally, the deletion and the standard 
OLS model produce the least precise estimates. In the case of the Gini and the Atkinson 
(e = 1), the underestimation introduced by these methods is around 12%. In the case of 
the Theil index, the deletion underestimates the true Theil by around 19%, while the 
standard OLS does it by around 22%. For the Atkinson (e = 1), the underestimation 
is 16% for the deletion and 17% for the standard OLS model.

Table 8, displaying simulations with a proportion of income missingness of 
12%, presents a different panorama. Whereas, for some correction methods, such 
as deletion or the standard OLS model, the figures obtained are similar to those 

TABLE 8

EFfECTS OF NONRESPONSE WHEN INCOME IS MISSING AT THE UPPER TAIL AND  
THE PROPORTION OF MISSINGNESS IS 12% (*)

A. Gini coefficient B. Theil coefficient

Method 1995 1998 Method 1995 1998

Deleting 0.8975 0.9115 Deleting 0.8558 0.8740
Simple regression 0.8850 0.8923 Simple regression 0.7893 0.8002
Random regression 0.9371 0.9479 Random regression 0.8808 0.9096
Hotdeck 0.9531 0.9521 Hotdeck 0.9763 0.9509
Two-step regression 0.9841 0.9692 Two-step regression 0.9480 0.9184

True distribution 0.3881 0.4103 True distribution 0.2931 0.3119

C. Atkinson index (e = 1) D. Atkinson index (e = 2)

Method 1995 1998 Method 1995 1998

Deleting 0.8549 0.8733 Deleting 0.8901 0.9091
Simple regression 0.8255 0.8396 Simple regression 0.8795 0.8986
Random regression 0.8998 0.9171 Random regression 0.9237 0.9379
Hotdeck 0.9376 0.9299 Hotdeck 0.9388 0.9407
Two-step regression 0.9711 0.9492 Two-step regression 0.9802 0.9706

True distribution 0.2329 0.2612 True distribution 0.4229 0.4872

Ratios between inequality measure after imputing and the actual one (true distribution). A value higher 
than one implies an overestimation of the true inequality level, whereas a value lower than one implies an 
underestimation of this level.
(*) 12% of missingness implies that the missing incomes are located at the highest 24% of the 
distribution.
Figures in italics are statistically non-significant (95%).
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presented in Table 7 (with 7% of income missingness), for other methods, such 
as the hot-deck, the random OLS or the two-step regression, the results are more 
accurate than those presented in Table 7. Thus, the two-step regression, for instance, 
underestimates the Gini coefficients by around 3% only, the Theil coefficients by 
5-8%, the Atkinson (e = 1) by 3-5% and the Atkinson (e = 2) by 2-3%. The reason 
for this lower underestimation, when the proportion of income missingness increases, 
is related to the way that simulations are carried out. A low percentage of income 
missingness means that only very high incomes will be missing (i.e. if we simulate 
7% of income missingness it means that only the top 14% of the actual incomes 
have a positive probability of being missing). On the contrary, a higher percentage 
of income missingness means that a larger area of the income distribution will be 
affected by the contamination (i.e. an income missingness of 12% means that the top 
24% of the actual incomes will have a positive probability of being missing). That 
will imply that, as the proportion of income missingness increases, not only will 
very high incomes be affected by missingness but also incomes located around the 
mean of the distribution. Incomes at the middle of the distribution do have different 
characteristics from incomes located at the top, especially regarding dispersion, as 
they are relatively more concentrated. Thus, when incomes are missing not only at 
the top but also in the middle part of the distribution we have the result that certain 
imputation methods (e.g. the hot-deck and the two-step regression) produce two 
effects: one, by imputing incomes in the top with a lower income, they tend to 
decrease inequality measures; and two, by introducing income dispersion at the 
middle of the distribution (an area with relatively less income dispersion than 
at the top), they tend to increase inequality coefficients. As income missingness 
increases the second effect dominates the first one, producing an overestimation of 
inequality coefficients.

From an economic perspective, the results obtained from the simulations may 
be even more relevant than from a statistical perspective. Incomes located at the top 
of the actual income distribution are difficult to capture by surveys, as the number 
of individuals in the population receiving such high incomes is extremely low. It 
thus becomes crucial not to miss income information from this group when its 
members are selected in the sample. The main reason is that high incomes have a 
comparatively larger effect on commonly used inequality measures, such as the Gini 
coefficient.6 Missing such incomes would cause an underestimation of inequality, 
influencing the social debate on it and any corrective policy. This problem (a sampling 
measurement error) has been documented, at least, in the Latin American case. For 
instance, Székely and Hilguert (2007) presents maximum incomes registered by 
many household surveys in Latin America and they compare them with the wage 
of a typical firm manager. In 10 out of 16 countries analysed, the average of the 10 
richest households’ incomes was below the wage of a typical middle-sized national 
firm manager. In Argentina, for instance, the average of the 10 richest households’ 

6	T his is demonstrated by comparing the effect that the deletion of cases with missing incomes has on the 
Gini coefficient when considering incomes missing at the bottom of the distribution (Part A of Tables 
4 and 5) vis-à-vis incomes missing at the top of the distribution (Part A of Tables 7 and 8).
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income was 31% lower than the earnings of a typical manager. It is likely that errors 
of this kind are attributable not only to sampling errors, but also to underreporting 
of incomes at the top level.

TABLE 9

MEAN ABSOLUTE PERCENTAGE ERROR (MAPE) WHEN DATA IS MISSING 
AT THE UPPER TAIL

a)   Proportion of income missingness: 7%

Method 1995 1998

Deleting 59.83% 62.32%
Simple regression 43.75% 43.83%
Random regression 51.27% 50.88%
Hotdeck 60.94% 57.77%
Two-step regression 40.38% 38.83%

b)   Proportion of income missingness: 12%

Method 1995 1998

Deleting 49.64% 52.17%
Simple regression 38.55% 38.23%
Random regression 50.32% 50.89%
Hotdeck 58.34% 57.00%
Two-step regression 42.41% 39.52%

VI.	CONCLUSIONS

This essay gives an idea of the magnitude and direction of the biases that could be 
introduced in the measurement of inequality when nonresponse is high. By using several 
well-known inequality coefficients, each of them sensitive to different dimensions of 
inequality, it has also been shown how different patterns of missingness can affect 
such coefficients. The results of the simulations show that all the correction methods 
considered impute missing incomes with error, which can be large in certain cases 
and under certain conditions. They also show that in the presence of high nonresponse 
rates the election of a particular correction method/coefficient could significantly alter 
the inequality panorama obtained. In the case of nonresponse rates varying in time 
(or patterns of nonresponse changing in time) it is even possible to obtain inequality 
estimates that reflect such changes in nonresponse rates (or patterns of nonresponse) 
rather than in the true inequality situation.

Unfortunately, the simulations show that none of the correction methods considered 
provide accurate estimates for all the inequality coefficients under all the different 
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patterns of missingness considered. Instead, they show that the use of some methods 
is not a good idea. For instance, the simple deletion of individuals, the most usual 
practice in empirical studies, can be a bad strategy unless missingness is randomly 
allocated across the distribution. If this is not the case, removing individuals from the 
sample may introduce biases in the measurement of inequality. In such a situation, 
the use of OLS methods to impute missing incomes (the other preferred method in 
empirical studies) should also be avoided as this methodology decreases the income 
variability of imputed incomes and, consequently, may underestimate overall inequality. 
In this respect, OLS methods should be used with random errors. In the context of the 
simulations performed in this essay, random OLS proved to be superior to standard 
OLS in the vast majority of the cases (22 out of 24 cases).

This result suggests that when analysing inequality from data sets containing 
a significant proportion of missing incomes (such as the Argentinian case) two 
issues should be considered. The first one is the correct gauging of the pattern of 
missingness followed by the data. Additional information coming from administrative 
or tax records should be used whenever possible (as in Atkinson and Micklewright, 
1983, for instance), to find out the pattern of missingness, as knowing such a pattern 
would allow the imputation of missing incomes with a suitable method minimising 
the risk of obtaining biased inequality coefficients. If there is no secondary source 
of information from which to infer such a pattern (as in the case of Argentina and 
most Latin American countries), it should be estimated from the household survey 
itself. For instance, by estimating a reporting-decision regression, such as the one 
presented in Section 3, it can be known if there exists a statistical relationship 
between the probability of income being missing and a set of explanatory variables 
that are completely recorded in such household surveys. In a case where this 
reporting-decision regression shows a non-ignorable pattern of missingness two-step 
regression methods or other imputation methods considering this pattern should be 
used to impute missing incomes.

The second issue that should be considered and that is especially relevant in cases 
when there is no certainty about the specific pattern of missingness, is the inequality 
coefficient used to measure inequality. As is clear from the results obtained, the Gini 
coefficient is relatively less affected by contamination due to nonresponse and its 
correction. Other coefficients, such as the Theil or the Atkinson indexes, are relatively 
more vulnerable to contamination, as they can be measured with large errors if the 
correction methods do not impute incomes accurately in the part of the income 
distribution where these coefficients are sensitive. Naturally, this imposes a cost on the 
characterisation that can be made on the distributive situation of a country, as several 
inequality dimensions cannot be measured as precisely with the Gini coefficient as 
with other indexes.

Finally, even when certain methods produce accurate inequality estimations, 
extreme care has to be taken with the inferences made in these situations. Measures 
of overall inequality may be estimated accurately, but that does not prevent other 
aspects of inequality, such as subgroups inequality, from being distorted by the use 
of particular correction methods.
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