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Abstract

We test two questions: (i) Is the Bayesian Information Criterion (BIC) more 
parsimonious than Akaike Information Criterion (AIC)? and (ii) Is BIC better 
than AIC for forecasting purposes? By using simulated data, we provide 
statistical inference of both hypotheses individually and then jointly with 
a multiple hypotheses testing procedure to control better for type-I error. 
Both testing procedures deliver the same result: The BIC shows an in- and 
out-of-sample superiority over AIC only in a long-sample context.
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Resumen

Contestamos dos preguntas: (i) ¿Es el criterio de información bayesiano 
(BIC) más parsimonioso que el criterio de información de Akaike (AIC)? y 
(ii) ¿Es el BIC mejor que el AIC para fines predictivos? Mediante el uso de 
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datos simulados, proporcionamos inferencia estadística con respecto a ambas 
hipótesis de manera individual y luego conjunta con un procedimiento de 
pruebas de hipótesis múltiples para controlar mejor el error tipo I. Ambas 
pruebas entregan el mismo resultado: el BIC muestra una superioridad dentro 
y fuera de la muestra sobre el AIC sólo en un contexto de muestra larga.

Palabras clave: AIC, BIC, criterios de información, modelos de series de 
tiempo, sobreajuste, evaluación de proyecciones, prueba de hipótesis conjunta.

Clasificación JEL: C22, C51, C52, C53.

1.	 INTRODUCTION

The success of many economic decisions relies on the forecast accuracy of certain 
key variables. Often, economic theory is not clear about the relationship between two or 
more variables, and a data snooping analysis is performed prior to modeling. A useful 
model-building procedure in circumstances with lower levels of knowledge about the 
fundamental variables behind the dynamics of the true data generating process is the 
use of the so-called information criteria –measures of goodness of fit based on the 
log likelihood function �( ) , the number of regressors (p), and the sample size (T). 
However, is not clear when –especially sample size, given the different asymptotic 
behavior– their model-based forecast may dominate.

The aim of this paper is to test two questions: (i) Is the Bayesian Information 
Criterion (BIC) more parsimonious than the Akaike Information Criterion (AIC)? and 
(ii) Is BIC better than AIC for forecasting purposes1? We provide statistical inference 
on both hypotheses individually with a significance test –based on Diebold and Mariano 
(1995), and West (1996)– and jointly with a multiple hypotheses test following White 
(2000) approach with some considerations of Hansen’s (2005) superior predictive 
ability test2. The exercise consists in the simulation of a large stationary dataset, 
containing 1,000 series generated by an autoregressive process (AR) of order p = 6. 
We then compute and compare the order determined by each criteria, which often 
differs from the true order. Then, for each series, we generate 1-step ahead forecasts 
and evaluate their accuracy based on the root of the squared forecast error (RSFE). 
We perform this exercise several times, each one considering a different sample size 
of the same 1,000 series, to basically account for the different asymptotic behavior 
of each information criteria.

1	 More details on derivation and comparison between both criterion can be found in Akaike (1974), Shibata 
(1976), Rissasen (1978), Schwarz (1978), Stone (1979), Lütkepohl (1985), Koehler and Murphree 
(1988), Zucchini (2000), Kuha (2004), and Weakliem (2004).

2	 These procedures are related to those used in Wolak (1987, 1989), and Sullivan, Timmermann, and 
White (1999). We use a version closer to that used in Pincheira (2011a, 2011b, 2012). A recent survey 
can be found in Corradi and Distaso (2011).
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The AIC is defined as �⋅ +T plog 2 AIC, while the BIC as ⋅ + ⋅�T p Tlog logBIC .
A lower score reflects a better fit. The difference in the chosen lag length comes 
exclusively from the penalty term imposed on the number of regressors of the fitted 
model. As is shown in Granger and Jeon (2004), it is expected for a sample size T ≥ 8 
and a given value of �  that p pBIC AIC≤ . The results reveal the existence of (in-sample) 
overfitting by AIC compared with BIC across different estimation sample sizes. From 
a predictive point of view, BIC beats AIC yielding a smaller RSFE on average, only 
in a long-sample context. When we test both hypotheses together controlling better 
for type-I error, our results supports this long-sample BIC superiority.

The remaining work proceed as follows. In Section 2, we describe our dataset, 
and discuss some asymptotic properties of information criteria. In Section 3, we report 
univariate in- and out-of-sample test results. In Section 4, we describe and analyze the 
results of joint test. Also, we provide some intuition about the different type-I error 
control used by our testing approaches. Finally, Section 5 concludes.

2.	 ESTIMATION SETUP

2.1.	Data

The simulated stationary data is generated as realizations of the AR(6) process:

	 ε= + + + + + +− − − − − −y y y y y y y0.09 0.08 0.07 0.06 0.05 0.04t t t t t t t t1 2 3 4 5 6 ,

where ε iidN(0,2%)t ∼ , using a random numbers generator. Note that the ratio 
of persistency to variance (0.39/0.02) reaches 20 times, a value similarly achieved 
with the maximum level of persistency allowed and a variance of 5% (0.99/0.05). 
Thus, describing a vast majority of economic time-series. The order p = 6 does 
not depends on itself. It is chosen in accordance to the relative slack between the 
maximum order of autoregression with which the search of the best model is made 
and the true order –in this case, as pmax = 24, the gap is four times the order of the 
true model. The number of replications is I = 1,000, and the complete sample size 
is T = 5,000, adding one observation for forecasting evaluation. We perform the 
same exercise four times, each one with a different sample size varying according 
to τ = {50; 100; 1,000; 5,000}. By doing this, we analyze the behavior of each 

τ∈
=
= +y{ }t

i I
t
t

1
1  process four times, carrying out an empirical insight about asymptotic 

behavior of both information criteria. As I = 1,000 may represent a number of 
replications which may not describe population parameters, we carry out a backup 
simulation with I ' = 10,000 for the more sensitive case (τ = 50). This, to have a 
measure of how far we are from a case more closely to population parameters. As 
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the results are both numerical and qualitative maintained, we keep I = 1,000 for the 
sake of computational efficiency3.

2.2.	Asymptotic properties

Both criteria have different asymptotics properties: AIC is not consistent while 
BIC it is, and when k > 1 it will choose the correct model almost sure (becoming 
strongly consistent)4. As is pointed out by Canova (2007), intuitively AIC is not 
consistent because the penalty function used does not simultaneously goes to infinity 
as → ∞T , and to zero when scaled by T. This led us to the use of different values 
of τ, and stands for our conclusion with univariate tests5. Note that consistency is 
not a must for forecast accuracy; the true model may underperform out-of-sample 
against a nested benchmark. Hansen (2009) finds that it is expected that a model with 
an autoregressive order smaller than true may beat out-of-sample, as a consequence 
of underfitting.

The asymptotic properties of AIC and BIC are derived in Shibata (1976, 1980, 
1981), Bhansali and Downham (1977), Sawa (1978), Stone (1979), Geweke and 
Meese (1981), Pötscher and Srinivasan (1991), Markon and Krueger (2004), and 
Karagrigoriou, Mattheou, and Vonta (2011). Recently, Xu and McLeod (2012) derive 
the asymptotics properties of the Generalized Information Criteria (GIC) which nests 
the criterion considered in this paper. In Appendix A we show the asymptotic properties 
of AIC and BIC based on Nishii (1984)6.

3.	 UNIVARIATE RESULTS

3.1.	In-sample results

As pointed out by Lütkepohl (1985), Nickelsburg (1985), Yi and Judge (1988), 
Clark (2004), Granger and Jeon (2004), Raffalovich et al. (2008), and Shittu and 

3	 We perform our simulations using an ad hoc Matlab code for I = 1,000. We then perform our backup 
simulation using the more specific commands provided in Econometrics Toolbox 2.1. The latter 
estimates takes a prohibitive debugging time with I ' = 10,000 and four values of τ. Another tool used 
was Eviews 7.2, but its pseudo-random numbers generator was not so powerful as the generated by 
Matlab. We provide statistical inference of each comparison to check the robustness of our results.

4	 See more details on Bozdogan (1987), Bickel and Zhang (1992), and Wasserman (2000). Some authors 
has proposed several modifications to AIC to improve its long-sample behavior, as Hurvich and Tsai 
(1993), and Burnham and Anderson (1998).

5	 There is no specific definition for short-sample. Thus, we find that, for example, are used as 45 observations 
in Sargent and Sims (1977), 14 in Miller, Supel, and Turner (1980), 15 in Nickelsburg (1985), 23 in 
Sims (1980), 68 in Fischer (1981), 56 in Gordon and King (1982), and many other candidates.

6	 Along this paper we keep fixed the variance of the data generating process. Other cases of asymptotic 
properties, besides when T → ∞, are derived for instance in Stone (1979) and Shibata (1981). Empirically, 
Yang (2003) and Chen, Giannakouros, and Yang (2007) analyze some cases where the variance becoming 
larger.
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Asemota (2009), AIC is prone to selecting more dynamic models than is the BIC –a 
fact that is supported theoretically. In Figure 1, we report the relative frequency of the 
number of regressors chosen by each criterion with different sample size, showing 
the common finding. These lag length orders are chosen by computing the lowest 
score achieved by each criterion fitting the AR(6) process choosing ∈p [1,24]� . The 
results of Figure 1 are summarized in Table 1, which reflects a consistent overfitting 
of AIC and the alignment of BIC through the true order as sample size increases.

TABLE 1

STATISTICS OF THE NUMBER OF REGRESSORS CHOSEN BY EACH CRITERION

τ = 50 τ = 100 τ = 1,000 τ = 5,000

AIC BIC AIC BIC AIC BIC AIC BIC

Median 19 17 10 1 12 4 12 6

Maximum 24 24 24 10 24 9 24 11

Minimum 1 1 1 1 2 1 5 4

Standard deviation 6.36 9.67 7.80 1.31 6.88 1.35 6.67 0.59

Skewness –1.49 –0.04 0.29 1.92 0.22 0.08 0.26 0.84

Kurtosis 4.19 1.11 1.58 7.12 1.55 3.17 1.52 13.21

Source: Authors’ computations.

For inference purposes, we define the variable ∆ τNi|  for the ith replication as the 
difference between the number of regressors chosen by AIC and by BIC given a sample 

size τ: ∆ = −τ τ τN NReg NRegi i
AIC

i
BIC

| | |
. Naturally, the variable ∆ τNi|  has a fixed sample 

size of 1,000 observations (the number of replications). We estimate the regression 

υ∆ = +τ τ τN ci i| | , where υ στ υiidN(0, )i|
2∼  and test the one-sided null hypothesis 

(NH) that ≤τ τ
−NH E c: [ ] 0In Sample , following the Diebold and Mariano (1995) and 

West (1996) approach. Rejecting the NH will confirm the statistical significance of 
AIC’s overfitting compared with BIC7. The estimates by ordinary least squares (OLS) 
are presented in Table 2.

7	 This finding is not necessarily bad for the AIC. There an extensive empirical literature that finds that 
AIC outperforms BIC in many contexts. Moreover, Kilian (2001) finds that it is a better criterion for 
identifying the true impulse response function.
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TABLE 2

ESTIMATES OF DIFFERENCES IN NUMBER OF REGRESSORS

τ = 50 τ = 100 τ = 1,000 τ = 5,000

cτ 6.30 9.75 8.94 7.81
Standard deviation 0.28 0.25 0.22 0.20
One-sided p-value 0.00 0.00 0.00 0.00

Source: Authors’ computations.

The statistic σ= ∆∆ ∆t N Obs/ [ / .]N N  is statistically significant at traditional 
levels of significance. This implies that the AIC chooses consistently more dynamic 
models than those chosen by BIC.

Figure 1

Histograms of in-sample autoregressive order estimates

Source: Authors’ computations.
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3.2.	Out-of-sample results

Lütkepohl (1985) shows that BIC outperforms AIC among other criteria in a 1-step 
ahead out-of-sample simulation exercise with vector autoregressions. Other authors, 
such as Koehler and Murphree (1988), and Granger and Jeon (2004), also find BIC 
to be superior to AIC when using macroeconomic data, and at multiple horizons. 
We replicate this finding in our setup by performing 1-step ahead forecasts for each 

τ∈
=
= +y{ }t

i I
t
t

1
1  replication. The results for each criterion are depicted in Table 3, where 

BIC-based forecasts show a better fit with τ = 50 and along with less volatile errors 
only with τ = 5,000. The columns of Table 3 corresponds to descriptive statistics of 
root squared forecast error (RSFE) measure, defined as:

	 = − 
τ
−RSFE y y( ˆ )t t

i
t t
i criterion

| | 1
| , 2

1

2 ,

where τ
−ŷt t

i criterion
| 1
| ,  is the 1-step ahead forecast of yt t

i
|  based on a model estimated with 

a sample size τ and the criterion AIC or BIC.
We then evaluate the accuracy by computing the statistical significance of the 

difference between the squared forecast error (SFE) achieved by both criteria, using 
the series,

	 ∆ = − = − − −τ τ τ
τ τ
− −SFE SFE SFE y y y y( ˆ ) ( ˆ )i i

AIC
i
BIC

t t
i

t t
i AIC

t t
i

t t
i BIC

| | | | | 1
| , 2

| | 1
| , 2 .

We test the one-sided null hypothesis that ≤τ τ
− −NH E d: [ ] 0Out of Sample  over 

the regression ξ∆ = +τ τ τSFE di i| | , with ξ στ ξiidN(0, )i|
2∼ . Estimates by OLS 

are presented in Table 4. There is evidence of predictive BIC-superiority only with 
long-sample estimates. For short-sample we can not determine about predictive fit 
between both information criteria; even more, with τ = 100 the statistic dτ is negative 
but not significant.

TABLE 3

STATISTICS OF THE FORECASTING EVALUATION SERIES

τ = 50 τ = 100 τ = 1,000 τ = 5,000

AIC BIC AIC BIC AIC BIC AIC BIC

Mean 0.65 0.64 0.65 0.66 0.68 0.66 0.99 0.91
Median 0.56 0.53 0.56 0.57 0.57 0.58 0.45 0.42
Maximum 9.00 9.24 10.50 8.52 8.61 7.94 10.31 9.69
Minimum 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Standard deviation 0.76 0.77 0.76 0.75 0.74 0.76 1.33 1.21
Skewness 5.48 5.21 6.04 5.14 4.32 5.07 2.40 2.31
Kurtosis 44.68 40.12 57.07 40.12 29.94 38.31 10.75 10.21

Source: Authors’ computations.
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TABLE 4

ESTIMATES OF DIFFERENCES IN SFE

τ = 50 τ = 100 τ = 1,000 τ = 5,000

dτ 0.01 –0.01 0.02 0.08
Standard deviation 0.01 0.02 0.02 0.02
One–sided p-value 0.16 0.27 0.12 0.00

Source: Authors’ computations.

4.	 A JOINT TEST

4.1.	A reality check

We now test the two null hypotheses together in a standardized version for each 
sample size τ:

	















=
−

−

















=   ≤τ

τ

τ τ

τ τ
τ

−

− −

NH

NH
E

NReg NReg

SFE SFE
E Z 0

In sample

Out of sample

Standardized
AIC

Standardized
BIC

Standardized
AIC

Standardized
BIC

, ,

, ,
.

It is expected that a vector x that contains all the NHs has nonpositive values, 
implying that BIC is the best in estimation and forecasting. When the number of 

replications (I) goes to infinity, we have ( )[ ]− →I E NZ Z 0 Ω( , )
A

 where Z is a 

standardized vector x ( Z x x ' x
1[ ]= − ∑− , with ∑ the covariance matrix of x), and Ω 

is the long-run covariance matrix. While I  goes to infinity, we are able to build the 
following statistic,

	
∑ −  











∈ = ×

I
I

EZ Zmax
1

( )
m H

mi mi
i

I

H
{1,..., } 1 1

where m is the mth row of a vector Z that contains all the hypotheses to be tested. 
Nevertheless, as the maximum of a Gaussian process is not Gaussian, we have to use 
any methodology able to deliver asymptotically valid p-values for the least favorable 
configuration (LFC). As White (2000) pointed out, there two ways in which we can 
compute the  p-values for LFC: (i) a simulation-based approach, and (ii) a bootstrap-based 
approach. We use the former, but in a less conservative manner as in Hansen (2005)8.

8	 A brief review about divergences of both methods are discussed in Corradi and Distaso (2011).
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Consider the diagonal matrix D, defined as σ= −Dmm m
1 ; m = 1, …, H, in which 

σ = Ωm mm
2 . Then, it must be fulfilled that ( )[ ]− →I E ND Z Z 0 DΩD( , )

A
, with the 

advantage that now [ ] =DΩD 1mm
; ∀ =m H1,..., . However, the terms [ ]E Z , D, and 

Ω are unknown. Regarding the first unknown term, note that the NH can be written as 
[ ] ≤NH E Z 0: , and, as the number of vectors that are coherent with this NH goes to 

infinity, we can pick the LFC, [ ] =E Z 0 , and work in a bounded test that allows for 
the identification of unknown terms. For the remaining two, we can use the Newey and 
West (1987) method to obtain a positive definite consistent estimator of Ω, generating 
an estimation of D using = −D Ωmm mm

0.5 9.
Embedding all the identified terms, under the NH we have →I NDZ 0 Ωˆ ( , ˆ )

A
 

where ≡Ω DΩDˆ ˆ ˆ ˆ . Then, the statistic can be written as,

	
∈

I DZmax ˆ
m H{1,..., }

,

where m-elements represent the components of the vector DZˆ .
The critical values of the statistic are derived from Monte Carlo simulations 

according to White’s (2000) procedure, following these steps: (i) calculate the Cholesky 

decomposition of DΩD G'Gˆ ˆ ˆ = , with G being a superior triangular matrix, (ii) define 
a number of replications, representing the number of realizations of the experiment, 
in this case, 1,000,000, (iii) for each replication, calculate an independent realization 
ν of a multivariate normal distribution ×N 0 I( , )H H , (iv) define ω as ω ν= G ' , such 

that ω is an independent realization of N 0 DΩD( , ˆ ˆ ˆ ), (v) define s as:

	 ω{ }=
∈

s max
m H

m
{1,..., }

and finally, (vi) sort the m terms and define the critical values according to the 
corresponding quantiles.

4.2.	Estimates results

The estimates of Z and Ω̂  with the Newey-West estimator gives the next pairwise 
results,

9	 As Ω is a positive semidefinite matrix, at least one hypothesis has to be nonnested. There is no available 
test for multiple nested hypotheses with m > 2 at the time. However, the test proposed in Clark and 
McCracken (2001) can be used for pairwise comparisons (m = 2).
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After 1,000,000 of replications of each νG '  matrix, we have the following 

estimations of DΩDˆ ˆ ˆ ,
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0

50 –1.13 x 10–16 –2.93 x 10–17

100 –1.49 x 10–16 –3.82 x 10–17

1,000 –1.69 x 10–16 –4.63 x 10–17

5,000 2.14 x 10–16 5.52 x 10–17



DOES THE BIC ESTIMATE AND FORECAST BETTER THAN THE AIC? 57

the   ≤τNH E Z 0:  is not rejected at typical significance levels for τ = {50;100;1,000}. 
But, when τ = 5,000  the results leads us to state that BIC is a dominant criteria for 
modeling stationary autoregressive processes for forecasting purposes.

4.3.	Type-I error control analysis

According to White (2000), Hansen (2005), Corradi and Distaso (2011), and 
Pincheira (2011a, 2012), when interest is centered on testing more than one univariate 
hypothesis jointly, there are generally two strategies for statistical inference. On one 
hand, we may determine the superiority in- and out-of-sample of BIC over AIC by 
stating that, given the results of both individual tests, we may reject or not both NH10. 
On the other hand, we can perform a joint test that controls better for the type-I error 
(this is, reject a true null hypothesis), as is summarized in the derivation of asymptotic 
valid p-values for LFC statistic. Obviously, both strategies will have the same outcome 
when the hypotheses are fully independent.

The first strategy –in this case, that based on the separate regressions– may present 
shortcomings handling type-I error, that is, rejection of a true NH. To figure this out, 
we will follow closely the next example proposed in Pincheira (2011a, 2012).

Assume that [ ] = ×NH E Y 0: L L , ∈�L , and the alternative hypothesis (AH) 

states that at least one component of Y is positive, ∃ ∈   >AH l L E Y: {1,..., } | 0l . Let’s 
suppose now that we have a collection of tests Tl  that depends on sample size (ψ), 

and is assigned to test   =NH E Y: 0l
l

( ) , with one-sided   >AH E Y: 0l
l

( ) , implying 

that any Tl  will reject the NH l( )  at a determined confidence level α≤ ≤0 1 when 

δΨ >T ( )l . In this case, δ represents a tabulated value coming from the distribution 

function to which contrast the NH. If the elements of =
�
T T T( ,..., ) 'L1  are orthogonal, 

we have that,

	 ∑δ( )∃ ∈ ∋ Ψ > = ϒ >
=

l L T NH NHPr {1,..., } ( ) | Pr( 0 | )l l
l

L

1

,

in which ϒ = 1l  if δΨ >T ( )l , or 0 otherwise. Then, ϒl  is a random variable that 

follows a Bernoulli distribution function of parameter α≥p , ≤ ≤p0 1. Under the 

NH, ∑ ϒ
= ll

L

1  follows a binomial distribution with parameters L and p. By using this 

terms, we have that,

10	 In this class of tests we found approaches like Bonferroni bounds and the proposed by Holm (1979).
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∑ ∑
δ( )

ϒ >






= − ϒ =








= − Ψ ≤ ∀ ∈

= − − → → ∞

= =
NH NH

T l L NH

p when L

Pr 0 | 1 Pr 0 | ,

1 Pr ( ) {1,..., } | ,

1 (1 ) 1 .

l
l

L

l
l

L

l

L

1 1

In other words, the strategy that tests the NH under the assumption of orthogonality 
between the elements of 

�
T , looses the control of type-I error as the number of hypotheses 

to be tested goes to infinity11. Instead, this will not happen with a joint test that takes 
into account the interactions between the elements of 

�
T .

5.	 CONCLUDING REMARKS

This document addresses the overfitted in-sample estimation of the AIC relative 
to BIC, and forecast accuracy using autoregressive models based on both information 
criteria. We formally test two null hypotheses: (i) Is the BIC more parsimonious 
than the AIC? and (ii) Is BIC better than AIC for forecasting purposes? The exercise 
consists of a simulation of a stationary dataset of 1,000 series generated by an AR(6) 
process, and then computing and comparing the order determined by each criterion 
chosen from a maximum order of 24 lags. Then, for each model, we generate 1-step 
ahead forecasts and evaluate their accuracy. We perform this exercise four times, each 
one with a different estimation sample size varying according to 50, 100, 1,000, and 
5,000 observations.

We test both null hypotheses individually with standard significance tests, and 
jointly with a multiple hypotheses test. The results show that the AIC chooses more 
dynamic models than those chosen with the BIC, and that BIC-based models have 
better out-of-sample performance than those based on AIC only with long-sample 
estimates. Furthermore, it is also shown that when the type-I error is controlled with a 
multiple hypotheses testing procedure, such as that the one developed in White (2000) 
and Hansen (2005), the results are robust. This leads us to conclude that BIC is a 
dominant criteria for modeling stationary autoregressive processes and for forecasting 
purposes exclusively in a long-sample context.

11	 Notice that even with =L 2  the test size could be distorted.
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APPENDIX A:
ASYMPTOTIC PROPERTIES OF AIC AND BIC

This appendix constitutes a reduced version of Nishii (1984). No more elements 
than those derived on Nishii’s paper have been added.

A.1. Preliminaries

Consider the stationary regression model εε= Φ +−y yP t P , where y is an ×T 1   
vector of observations, ΦP  is a coefficient matrix, φ φΦ = ( ,..., ) 'P P1 , and εε  is 
assumed to be independently normally distributed, σσ∼εε iidN 0 I( , )T

2 . We index a set 
of models with =j j j{ ,..., }p1 , sorted according to ≤ ≤ ≤ ≤j j P1 ... p1 , if and only 
if Φ ≠ 0i , for all =i j . The number of unknowns parameters achieves = +p p 1,j  
because σ2 is unknown.

Define Dj the matrix of order ×P p , of zeros and ones, that depicts the
model j. Thus, the model j, εε= Φ +−y yj t j , has an estimated vector parameter 
Φ = ΦD D 'j j j P . Consider a family of nested models, J, thus, we state the following 
assumption:

Assumption If J contains the true model, =j p{1,..., }0 0 , the matrix y'y  is positive 

definite, and =
→∞

−M T y'ylim ( )
T

1  exists and is positive definite.

This assumption implies that =rank pyD( )j , in other words, that D y y D' 'j t p t p j- -  

is positive definite. For the model ∈j J  we define the following quantities:

	 D D y y D D y yˆ ( ' ' ) ' ' ,j j j t P t P j j t P
1Φ = − −

−
−

	
= − − −

−
−Q y D D y y D D y( ' ' ) ' ,j t P j j t P t P j t P

1

	
σ = ⋅ − 

−T y I Q yˆ ' ,j T j
2 1

where Φ̂ j  is the maximum likelihood estimator of Φ j , Qj is the projection operator 
with respect to column space of yt–PDj, and σ̂ j

2  is the maximum likelihood estimator 
of σ j

2 . We discuss the asymptotic properties of the Generalized Information Criteria 
(GIC) defined as σ= ⋅ + ⋅GIC T g T plog ˆ ( )j j j

2 , that nests both AIC and BIC. Thus,

	

=
=

=






GIC

AIC if g T

BIC if g T T

( ) 2,

( ) log( ).
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Along this work we consider only the case where P and Φ  are kept fixed as 
→ ∞T . Some alternative cases are presented in Stone (1979) and Shibata (1981).

A.2. Goodness of fit measures

Consider j a model selected of an information criterion of all J possible specifications. 
We define the following two measures of goodnes of fit to whom derive its asymptotic 
properties:

	 (i):    = = j jPr Pr ˆ ,j T|

	 (ii):   = Φ − Φ



− −R E y y ,T P t P j t jy

2

We can redefine the second term by expressing RT as a sum of Rj T|  across 

j, ∑ ∑ ΦΦ ΦΦ ΓΓ= = −




 





∈ − − =∈
R R E yyT j Tj J P t P j t j j jj J| y

2
ˆ , where ΓΓϖ  act as indicator 

function of ϖ12. Now, let’s define two groups of models, = ∈ ⊄J j J j j{ | }1 0 , and 

= ∈ ⊇J j J j j{ | }2 0 . Then, for any criterion, the next conditions must be fulfilled:

Condition 1:  ⋅ = ∈
→∞

T for j Jlim Pr 0 .
T

j T| 1

Condition 2:  = ∈ −
→∞

for j J jlim Pr 0 { }.
T

j T| 2 0

These conditions implies for Rj T|  the following:

Theorem 1 (Nishii, 1984, p. 760):

•	 If a criterion satisfies Condition 1, then  = ∈
→∞

R for j Jlim 0 .
T

j T| 1

•	 If a criterion satisfies Condition 2, then  = ∈ −
→∞

R for j J jlim 0 { }.
T

j T| 2 0

Proof: See Nishii (1984), p. 760.

Remark: For a criterion that jointly satisfies Condition 1 and 2, we have 
σ= =

→∞ →∞
R R plim lim .

T
T

T
j T| 0

2
0

12	 These same measures are used in Shibata (1976) for AIC case.



DOES THE BIC ESTIMATE AND FORECAST BETTER THAN THE AIC? 63

A.3. Asymptotic properties

We now show the asymptotic distribution of the model ĵ  and the limit of RT  for 
both criteria. Let M0.5  be a squared matrix of order P such that =M 'M M0.5 0.5 , and, 
for a ∈�j J2 , let �L j  be a − × �P p p( ) j0

*  matrix defined as (row and column orders 
depicted around matrix):

	 =

−

















…

�
…
� � �
…

�

�

p p

p

P p

M D

L

0 0

0

j

j

j

0.5

0
*

0

0

,

where = −� �p p pj j j
*

0
. For ∈�j J2 , we define the following squared matrix of order 

−P p( )0 , ξ = −
� � � � �z L L L L z' ( ' ) 'j j j j j

1 , where ∼ −Nz 0 I( , )P p0
, and ξξ ξξ= − ⋅� � i pj

i
j ĵ

* . When 

=p P0 , the matrices �L j
 and z are set to zeros.

Lemma: For a model ∈�j J2 , − �AIC AICj j0
 converges in law to the random 

variable ξ �j
i
 as → ∞T .

Theorem 2 (Asymptotic properties of Prj T|  and RT  for AIC, Nishii, 1984, p. 761):

•	 For a model ∈j J1 , and any positive constant λ, =λ
→∞

−Tlim Pr 0
T

j T| .

•	 For a model ∈j J2 , Prj T|  converges to ξξ ξξ= ≥



�Pr Prj j

i
j
i

 , for ∈�j J2 .

•	 The function RT converges to, R p E jj J

2
0 ( )j

i
j
i
�

∑σ ξξ ΓΓ= + 











ξξ ξξ≥∈

 for ∈�j J2 .

Proof: See Nishii (1984), pp. 761-762.

Asymptotically, AIC has a positive probability of selecting models that properly 
include the true model. However, BIC has slightly different asymptotic properties; is 
a consistent estimator of the true model as follows:
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Theorem 3 (Asymptotic properties of Prj T|  and RT for BIC, Nishii, 1984, p. 764): 

•	 For a model ∈ = λ−j J o T, Pr ( )j T1 | ,  for any positive constant λ.

•	 For a model ∈ − =j J j o{ }, Pr (1)j T2 0 | .

•	 The function RT converges to σp0
2  as → ∞T .

Proof: See Nishii (1984), pp. 764-765.


