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Abstract

The most influential explanations of economic growth along the past
five decades rely on two main items: human capital accumulation and
the dissemination of knowledge/technological diffusion. These items tra-
ditionally appear as separate growth sources. In this paper an inte-
grated perspective is adopted. We begin by building a growth model
where two goals regarding technological achievements are considered;
economic agents simultaneously want to expand the theoretical knowl-
edge frontier and to reduce the gap between ready-to-use techniques
and potentially available knowledge. Considering an objective function
that captures the two pointed goals, one develops an intertemporal
optimization setup concerning a two sector scenario. The first sector
adapts existent technology to productive uses, while the second is an
education sector. In this way, we can study the close relationship be-
tween technical progress and human capital generation decisions under
an intertemporal perspective.
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I. Introduction

In most economic growth models a human capital variable and a technology
variable alternatively arise as the engine of growth. They acquire such quality
when introduced in an aggregate production function alongside with physical capital
and labor. Solow (1956) and Swan (1956) have demonstrated that under a neo-
classical production function, these two last inputs are unable to produce, without
anything further, long run sustained growth. Uzawa (1965), Lucas (1988), Caballé
and Santos (1993), Mulligan and Sala-i-Martin (1993), Xie (1994), Bond, Wang
and Yip (1996) and Ladrón-de-Guevara, Ortigueira and Santos (1999), among
others, have modelled human capital formation and they have included such an
input in the aggregate production function in order to support the concept of
endogenous growth. Romer (1986, 1990), Aghion and Howitt (1992), Jones (1995),
Evans, Honkapohja and Romer (1998) and Young (1998) have chosen to put
technology in the centre of economic growth explanations, and a time dependent
technological index arises in the production function as the vehicle to sustained
growth.

 All the referred work and all the discussion around aggregate growth models
put the several inputs to production at a same analysis level. This means that in
both, the physical capital-human capital approach and the physical capital-tech-
nology approach, all the inputs that are relevant to growth have to appear as
arguments in the final goods production function. An early attempt on the inter-
pretation of economic growth, Nelson and Phelps (1966), avoids such a straight-
forward view. For these two authors, it makes sense to assume that human capital
serves as a means to generate and spread technology and that technology is then
usable in the physical goods production function. Recognizing that the Solow-
Swan paradigm is valid when assuming a fixed level of technology, we may
continue to use such a framework but replacing the constant level of technology
by a time dependent variable, where the respective time path is determined by
two factors: investment in humans and technological diffusion.

Recent literature points in this direction. For example, Aghion, Howitt and
Violante (2003) state that

“skills are not just an input to the production of goods and services but also
a factor in the creation and absorption of new technological knowledge”
(page 444).

and Acemoglu (2003) reemphasizes that
“Nelson and Phelps (1966) postulated that human capital is essential for the
adoption of new technologies. This view has at least two important implica-
tions: First, the demand for skills will increase as new technologies are intro-
duced, and second, economies with high human capital will effectively pos-
sess better technologies” (page 465).

Also Benhabib and Spiegel (2002) recover the Nelson-Phelps approach, pre-
senting a generalized model, where different possibilities about technology diffu-
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sion patterns are assumed. Both, the technology frontier - current productivity level
relation and the impact of human capital accumulation over technology results,
are considered in this analysis.

In this paper the Nelson-Phelps approach is revisited. We study growth giv-
ing particular attention to technology and human capital and attributing a sup-
porting role to the capital accumulation constraint of Solow and Swan, and to
the consumption utility intertemporal maximization framework of Ramsey (1928),
Cass (1964) and Koopmans (1964). Our main argument is that since it is the
human capital and the technology variables that determine growth, we can find
the basic growth results and dynamics through the analysis of the factors that
influence the time evolution of these variables. The Solow-Ramsey framework
becomes accessory and it may be used solely to justify that main economic
aggregates (per capita output, physical capital per labor unit, per capita con-
sumption) follow a same long run growth rate as the one that is found for the
technology variable.

Modelling human capital at a different level than it is usually modelled in
economic growth models will allow for two new results. First, we will be able
to define a human capital production function where decreasing returns are com-
patible with long run constant per capita economic growth, what implies purg-
ing a counterfactual aspect of two sector growth models: the linearity problem
raised by Solow (1994) and Jones (2003) is in this way eliminated. We do not
have to assume any kind of artificial knife-edge linearity to encounter a con-
stant long run growth rate. The second result will seem, at least at a first glance,
a more awkward one. The way in which we will model human capital will lead
to a long run steady state where all relevant per capita variables (physical capi-
tal, output, consumption, technology) grow at a same rate while human capital
will exhibit a zero growth rate in the long run solution. Growth models gener-
ally present human capital as growing with the other variables. Here, we arrive
to the result of convergence of the human capital variable to a constant long run
value. This may be supported on the idea that we may expand techniques and
physical goods indefinitely but there is a limit to the expansion of human capa-
bilities.

In what concerns the modelling of technology we follow the Nelson-Phelps
approach in distinguishing two concepts of technology. First, there is a theoreti-
cal level of technology or a technological possibilities frontier; second, we as-
sume a level of technology in practice, which is a fraction of the first and that
can be applied directly to productive uses when embodied in an aggregate final
goods production function. Solow (2003) also points to a same kind of distinc-
tion:

“Endogeneizing technological progress is a fine idea, provided that it can
actually be done in a sensible way (…) the growth literature proceeds as if all
improvements in total factor productivity originate in research and develop-
ment activities. That is what gets modelled. But it is certain that an appre-
ciable fraction of ‘technological progress’ has nothing to do with R&D. It
originates on the shop (or office) floor and is ‘invented’ by workers and
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managers who see that there are improvements to be made in the location of
activities, the flow of work, the way part A is fastened to part B, and so on”
(page 548).

The distinction concerning theoretical knowledge and applied techniques has
been widely discussed in the literature, from several points of view. For instance,
Bresnahan and Trajtenberg (1995), Helpman and Trajtenberg (1994, 1996) and
Helpman (1998) make reference to the pervasiveness of general purpose tech-
nologies (GPTs). The important argument advanced by these authors is that GPTs,
like electricity or microelectronics, are generated discontinuously in time and in
an exogenous way relatively to market mechanism incentives. A new GPT (a
kind of scientific not directly applied discovery) generates two subsequent phases
on the evolution of the economic system. The first phase, that this group of au-
thors calls “time to sow”, is characterized by a transfer of resources to the pro-
duction of applied techniques and tools that make use of the new GPT. This first
stage will almost certainly imply low or negative productivity growth. In the second
phase, called “time to reap”, there is already a generalized use of the GPT under
the form of complementary inputs, making it possible, under network effects, to
boost productivity growth.

This view of knowledge creation and technology adoption supports a busi-
ness cycles perspective. Growth declines or accelerates as a result of the dynam-
ics regarding the creation, development and spreading of technologies. This is
also the view of several other authors, namely Andolfatto and MacDonald (1998),
Boldrin and Levine (2001), Hall and Khan (2003), Mukoyama (2003) and Stiver
(2003). These authors develop conceptual frameworks where aggregate fluctua-
tions tend to arise from the discovery and diffusion of new technologies and,
thus, exogenous shocks can be excluded from the analysis and from the explana-
tion of growth dynamics. Under this perspective, both expansions and recessions
are the result of good news, that is, periods of high growth mean the generalized
adoption of a given new scientific / technological knowledge, while periods of low or
even negative growth will correspond to periods where the technological frontier
is expanding but the direct productivity gains of such expansion are not yet vis-
ible in the economic system.

Furthermore, the cited authors call the attention to the fact that inventions
often occur as sudden events, while diffusion is a slow continuous process which
involves a great number of individual decisions. Nevertheless, there is the clear
conscience that it is diffusion and not creation that ultimately determines the pace
of productivity change and economic growth. Also Keller (2002, 2004) discusses
technical change and diffusion, in this case focusing the attention on international
patterns of knowledge dissemination.

While the cited authors analyze in detail the nature and linkages of adopting
sectors, the speed and the extent of the diffusion process, and the social and
private benefits of the innovation - diffusion mechanism, these do not constitute
the main concern in our present analysis. Instead, we just focus on the logical
observation that without theoretical knowledge generation, there is no possible
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application, and hence, the absence of the use of new technologies in production
implies that growth will not occur.

Another difference in approach relates to the fact that we consider the cre-
ation of basic knowledge as endogenous – the model to be developed is a social
planner problem that attributes to the government a very meaningful role in the
management of knowledge creation and diffusion. The government has a funda-
mental word to say with respect to R&D allocation of resources. If authorities
choose to expand the knowledge frontier they concentrate public resources with
such a purpose. If, instead, government is mainly concerned with giving to the
society the possibility to diffuse knowledge in order to create wealth, fewer re-
sources will be allocated to public R&D expenditures, and thus the knowledge
frontier does not move outwards.

Therefore, our model furnishes a partial explanation of the growth process,
neglecting the role of capital accumulation, savings, population growth and con-
sumer preferences. It focus the attention on the group of features that in any
society, even in the ones which have more liberal economic regimes, are under
the control (at least partially) of a social entity. The social planner has the
responsibility to allocate more or less resources to innovation and diffusion (the
resources available for diffusion are the ones that the state does not withdraw
to creation, and that simultaneously are not diverted to other private or public
uses).

The goal of the decentralized economy may consist mainly or solely in hav-
ing the higher level of applied knowledge it can get, in order to accelerate growth,
but the authority has an allocation of resources responsibility at two levels: first,
it has to have conscience that if no knowledge is created, the society cannot apply
it in any way; second, the generation of scientific knowledge is also an end in
itself, that is, any society, in order to progress and stand on the international
arena, has to be able to display cultural and scientific potential. These points will
support the introduction, along the next section, of a social utility function where
knowledge adoption and knowledge generation both appear as arguments.

The treatment that we will give in the following sections to technology choices
will imply an optimal control problem, where the goals (of a social planner) are
simultaneously to amplify the frontier of technological knowledge and to approxi-
mate the level of ready to use technology to such frontier. This optimization prob-
lem is constrained precisely by the Nelson-Phelps motion equation that character-
izes the relation between the two technology concepts.

The setup under consideration relies on a trade-off respecting technology
choices: to get new inventions to be available to produce final goods one has to
renounce to some of the growth of the basic science frontier and vice-versa.
Economic resources are scarce in the sense that they cannot be used in a simul-
taneous way to give birth to new ideas and to make these ideas immediately
ready to productive ends. We will end up with a two sector growth model similar
to the ones in the literature already referred along this introduction, nevertheless
with some important new features: physical capital and consumption are not nuclear
in our analysis, the two sectors generate embodied (human capital) and disembod-
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ied (technology) knowledge and the fundamental choices are not about consump-
tion and savings but about technology production and technology diffusion.1

In short, we rely on the Nelson-Phelps approach in considering a technology
production function where human capital and a technology gap appear as inputs
and we make a deeper analysis by considering the process through which human
capital is produced and by considering as well, in alternative to an exogenous
technology growth rate, a controllable technology growth rate. The model that we
will be faced with is an optimal control growth model where the only variables
that are considered are the fundamental growth sources: human capital and tech-
nology.

The remainder of the paper has the following contents. Section II develops
the structure of the model and refers to the steady state results. Section III dis-
cusses the nature of the balanced growth path and characterizes the transitional
dynamics in the neighbourhood of the steady state. Section IV concludes.

II. A Two Sector Model of Optimal Technology Choices

Take technology and human capital as the engines for economic growth. The
first variable, technology, may be decomposed in two. The technology possibili-
ties frontier will be variable T(t) and a ready to use in production technology
variable is represented by A(t). In every time moment A(t) ≤ T(t), representing
both variables positive quantities for all t>0. We will be concerned with under-
standing the temporal evolution of a gap variable φ( ) ( ) / ( )t A t T t≡ , φ(t)∈ [0,1],
that has a straightforward interpretation: the higher the value of φ(t) the smaller
is the gap between the values of the technology variable representing knowledge
immediately available to produce and of the technology variable representing the
scientific state of the art.

Other fundamental variable is the growth rate of the technology frontier:
τ ( ) ˙( ) / ( )t T t T t≡ , T(0)=T0 given. In our model this growth rate is assumed as a
control variable for the representative agent (as discussed in the introduction, this
is the public authority); that is, in what concerns technology decisions, the author-
ity is able to choose the rate at which scientific progress occurs.2 Nevertheless,
obviously this must be a constrained decision process because to allocate more or
less resources to research activities implies an opportunity cost respecting to the
resources that remain available for other economic activities. In particular, in our
framework we assume that the choice in terms of basic technology progress is
constrained by the necessity of using economic resources to apply technology to
the goods production process. A trade-off emerges between our first two endog-
enous variables: φ(t) and τ(t).

In what concerns technology choices, the basic economic goal of the social
planner is to maximize the intertemporal stream of v(φ(t),τ(t)) functions, being a
function v defined as follows.3
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Definition 1. Function v. The representative agent that makes technology choices
faces a real valued objective function v: 

  
ℜ ℜ+

2
�  that obeys the following prop-

erties:

i) Continuity, concavity and smoothness.4

ii) v
t

v
v

t

vφ τ
φ θ τ µ⋅ = ∈ ⋅ = ∈( )

( , );
( )

( , )0 1 0 1 .

The second condition in definition 1 defines constant elasticity parameters.
This condition ensures that the utility of straightening the technology gap and the
utility of increasing the pace of technological progress are, for the representative
agent, both positive and diminishing. Note that such an assumption follows from
the nature of the representative agent, as discussed in the introduction. Public
policy must be oriented to the expansion of the knowledge frontier, as well as to
the stimulus to apply technology to production because: (i) the government has
the responsibility to guarantee an everlasting flow of new knowledge in order to
be possible to apply it, and (ii) enlarging the knowledge frontier is a vital process
to the survival and development of any organized society or civilization.

Therefore, there is a double concern of the representative agent: to expand
the technology frontier and to guarantee that such knowledge is applied to gen-
erate wealth. Let us remark, once again, that in this process the public sector has
control over the amount of knowledge that is created, through the resources it
allocates to such purpose, and therefore the growth rate of technology appears as
a control variable. The amount of knowledge that arrives to the direct productive
activity is not under the government control; as we present bellow, a state con-
straint will characterize such relation.

To simplify our treatment of the model we will work with a specific func-
tional form of the above defined v function. We take a Cobb-Douglas type of
function (for instance, a CES function would also be a candidate functional form).

v t t t t( ( ), ( )) ( ) ( )/( ) /( )φ τ φ τσ σ σ= ⋅+ +1 1 1 (1)

The correspondence between parameters θ and µ in definition 1 and param-
eter σ in equation (1) is the following: σ=µ/θ and µ=1-θ.

The trade-off between the two endogenous technology variables, φ(t) and τ(t),
becomes explicit by considering the Nelson-Phelps technology constraint:

˙( ) ( ( )) ( ( ) ( )), ( ) , ' , ' ' , ( )A t g h t T t A t g g g A A= ⋅ − = > < =     0 0 0 0 0 0  given (2)

With (2) we state that the rate of increase of the index A(t) is a function of
human capital [h(t) is a human capital per unit of labor variable or a human
capital efficiency index] and of the gap that exists between the two technology
variables. First and second derivatives of g indicate that there are positive but
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diminishing returns of human capital in the production of technology. The gap
term translates the idea that the level of technology in practice will evolve faster
when there is a large gap between technology possibilities and the stock of knowl-
edge instantaneously available to produce.

Recovering variable φ(t), from equation (2) we arrive to the final form of the
first resource constraint of the optimal control problem:

˙( ) ( ( )) ( ( )) ( ) ( ), ( )φ φ τ φ φ φt g h t t t t= ⋅ − − ⋅ =1 0 0  (3)

To complete the presentation of the model it is necessary to define a rule
for the time evolution of the human capital variable. This can have the standard
form in most growth models, i.e., human capital evolves in time through a pro-
duction process that involves a production function, f, and a constant deprecia-
tion rate, δ.

˙( ) ( ( )) ( ), , ( )h t f h t h t h h= − ⋅ > =δ δ   0 0 0 given (4)

The human capital variable is, alongside with variable φ(t), a state variable of
the intertemporal control problem. Equations (3) and (4) are the motion equations
that constitute the resource constraints to which the optimization problem is sub-
ject to.

The analytical tractability of the model demands that we take explicit func-
tional forms for functions f(h(t)) and g(h(t)). Imagining that it is possible to choose
at each moment in time the shares of human capital to allocate to each of the two
economic sectors (technology and education sectors), we define a new variable
u(t) that represents precisely the share of human capital allocated to the genera-
tion of technology. Obviously u(t) ≤ 1, ∀ t. The properties of function g were set
forth in equation (2). Positive and diminishing returns of human capital in the
production of technology imply a function with the following shape:

g h t a u t h t a( ( )) ( ( ) ( )) , , ( , )= ⋅ ⋅ > ∈η η   0 0 1 (5)

Function f may be defined in a similar way:

f h t b u t h t b( ( )) ( ( )) ( ) ,= ⋅ − ⋅[ ] >1 0β   (6)

For equation (6) we find it essential to impose β ∈ (0,1) in order to encounter
a long run balanced growth path. Thus, one assumes that the education sector
exhibits diminishing returns in the accumulation of human knowledge. This point
was referred earlier in the introduction and should be stressed since it constitutes
an innovation relatively to conventional growth models. In our model, where human
capital contributes to the generation of physical goods solely in an indirect man-
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ner, we must assume diminishing returns in the accumulation of human capital in
order to get a long term constant steady state growth.

As a result of this assumption, the human capital per unit of labor variable
will have a different nature relatively to other inputs: its level will not grow in the
long run in opposition to what happens to the several per capita variables, namely
output, consumption and physical capital. Remember that h(t) defines the skills of
an average individual, and so it makes sense to find a result where these tend to
a constant value, that is, intuitively it is hard to support the concept that human
skills may be improved further and further indefinitely at a constant rate. Tech-
nology and machines can be expanded without limit, individual skills cannot -
this is a fundamental argument of our analysis.

The optimal control growth problem has now all the necessary ingredients.
Definition 2 states what we understand by an optimal solution.

Definition 2. Control problem optimal solution. An optimal solution is a
set  of paths φ τ( ), ( ), ( ), ( )t h t t u t{ }  that solve the maximization problem

Max v t t e dt
t u t

t

τ

ρφ τ
( ), ( )

.( ( ), ( )) ⋅ ⋅−+∞
∫0  subject to constraints (3) and (4) and where func-

tions v, f and g are defined respectively by (1), (5) and (6). All variables assume
non negative values, initial values for state variables are given and shares φ(t)
and u(t) remain always below unity. Furthermore, it is clear from the problem
that we take an infinite horizon and that future technology accomplishments are
discounted. A constant discount rate, ρ>0, is considered.

Let pφ(t) and ph(t) be co-state variables. We synthesize our model’s informa-
tion into a current value Hamiltonian function:

H t h t t u t p t p t

v t t a u t h t t t t p t

b u t h t h t p t

h
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Applying the Pontryagin’s maximum principle, the first order optimality con-
ditions can be computed:
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H t t a u t h t t t tpφ
φ φ φ τ φη= ⇒ = ⋅ ⋅ ⋅ − − ⋅˙( ) ˙( ) ( ( ) ( )) ( ( )) ( ) ( )1 (12)

H h t h t b u t h t h tph
= ⇒ = ⋅ − ⋅[ ] − ⋅˙( ) ˙( ) ( ( )) ( ) ( )1 β δ (13)

lim p t e t
t

t
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−⋅ ⋅ =φ
ρ φ( ) ( ). 0 (14)

lim p t e h t
t

h
t

→+∞

−⋅ ⋅ =( ) ( ).ρ 0 (15)

Conditions (8) to (15) are sufficient conditions of optimality given that the
optimal Hamiltonian is concave in [φ(t),h(t)].

The optimality conditions are the relations necessary to prove the following
proposition.

Proposition 1. Existence and uniqueness of a balanced growth equilibrium. Under
the condition β+ρ/δ<1 there exists a unique balanced growth path or unique
steady state four dimensional point that satisfies (8) to (15).

Proof: To prove the existence of a unique steady state point one has to solve the

system ˙ ˙ ˙ ˙φ τ µt h t t t( ) ( ) ( ) ( )[ ] =   0 . The solution for this system consists on a set

φ τ µ, , ,h{ }  of constant values. To solve the system one is compelled to find
equations of motion for the two control variables. Let us start with τ(t).

Differentiating (8) in order to time, the following growth rates relation is
obtained:5

γ σ γ σ γτ φ φ
= − ⋅ − + ⋅( )1 p (16)
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Replacing γ ρφ  and γφ in (16) by the corresponding expressions attainable
from (10) and (12), the motion equation for τ(t) comes

˙( ) ( ) ( ) ( ( ) ( )) ( / ( )) ( )τ
σ

τ σ ρ σ φ τηt t a u t h t t t= ⋅ − + ⋅ − ⋅ ⋅ ⋅ +




⋅1

1 1 (17)

The time evolution of u(t) is derived from the following growth rates relation
that is true under (9):
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Equations (17) and (19), alongside with the two resource constraints, consti-
tute the system from which we derive the steady state solution. The system has
in fact a unique solution, which is
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with g a u h= ⋅ ⋅( )η
. If β+ρ/δ<1 then we guarantee that u ∈ (0,1) and this is the

only boundary condition that must be imposed in order to (20) to be a feasible
four dimensional steady state point■

The steady state results deserve some comments. First, we notice that the
share u  depends upon parameters β, ρ and δ. The higher the elasticity parameter
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β and the discount rate the lower the value of the share of human capital allo-
cated to technological development. The faster the depreciation of human capital
the more this form of capital is allocated to its own production relatively to a
technological use. Second, the human capital efficiency index is indeed a constant
amount on the balanced growth path. The better the sector technical conditions
(the higher the value of b), the higher the elasticity parameter β, the higher the
discount rate and the lower the depreciation rate, the larger will be the accumu-
lated human capital stock under a long run perspective. Third, we observe that φ
obeys the boundary condition φ≤1, because ρ>0 and g > 0 . Fourth, the technol-
ogy growth rate arises in the steady state depending on a multiplicity of factors,
namely: (i) the objective function parameter, (ii) the intertemporal discount rate,
(iii) both sectors education functions parameters (a and b), (iv) the elasticity pa-
rameters (β and η) and (v) the depreciation rate.

For the steady state growth rate result,

τ σ
σ

ρ β ρ δ δ β ρ δ β β η
=

−
⋅ + ⋅ − − ⋅ ⋅ +( )













−

1
1

1 1
a b(( ) / ) ( / ) ( / )

/( )

(21)

we highlight that the partial derivatives ∂τ ∂σ ∂τ ∂ ∂τ ∂/ , / , /> > >0 0 0  a b  and
∂τ ∂η/ > 0  have unquestionable signs. The same is not true for β, ρ and δ be-
cause when changes in these factors benefit the accumulation of human knowl-
edge (make h to rise) they injure the transference of human capital to innovation
purposes (make u to fall).

At this stage, found the long term technology growth rate, we could trans-
form the model by adding to it a physical capital accumulation constraint that
should include a labor augmenting aggregate production function; then, we would
get an economic growth framework. This framework will not be developed, but
the results that its introduction would bring can be stated in some detail. Under
such a scenario the growth rate in (21) would be the steady state economic
growth rate for the various per capita aggregates: physical capital, consumption
and output. In such a model we have endogenous growth through technology
choices, that is, long run constant per capita growth is obtained and this is a
function of several parameters of our analysis. These parameters concern the
way in which the economy is able to create and diffuse technology and to in-
vest in human capabilities. The accomplished growth rate is precisely the result
of the way the economy handles the two true engines of growth: human capital
and technology.

III. Stability and Dynamics

To make a meaningful analysis of the stability and dynamics of the model we
have to take some simplifying assumptions over the problem proposed in the
previous section. Under the two following assumptions we prove that the model
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is saddle-path stable and we proceed to the characterization of the dynamic be-
havior of the various endogenous variables.

Assumption 1. Let φ φ( ) ( , )t = ∈ 0 1 , for all time moments.

Assumption 2. Let the following constraint over parameter values hold:
σ β η β= −/( ) .

Assumption 1 eliminates the variable φ(t) of the model, and from (3) we
realize that under this assumption the other three variables are not independent
from each other any more, that is, for every moment of time is now true that

τ φ
φ

η( )
( )

( )
( ( ) ( ))t a

t

t
u t h t= ⋅ − ⋅ ⋅1

(22)

Assumption 2 implies the condition η β> ⋅2  if we want σ ∈ (0,1) to continue
to hold. The optimization problem is hereafter the one in definition 3.

Definition 3. Optimal control problem with a fixed technology gap. Let
assumptions 1 and 2 hold. The goal of the representative agent is now to

maximize φ φη β η β η β ρ( ) / / .( ) ( ) ( )− ⋅ −+∞ ⋅ ⋅ −[ ] ⋅ ⋅[ ] ⋅ ⋅∫ 2
0

1a u t h t e dtt  subject to
˙( ) ( ( )) ( ) ( )h t b u t h t h t= ⋅ − ⋅[ ] − ⋅1 β δ , h(0)=h0.

To prove the existence of a unique steady state one has to proceed as in the
previous section. Necessary optimality conditions are:

φ φη β η β η β β( ) / / ( ) ( )( ) ( ) ( ) ( )− ⋅ − − − −⋅ ⋅ −[ ] ⋅ = ⋅ −[ ] ⋅2 1 11 1a u t b u t p t (23)

with p(t) a shadow-price variable. And

˙( ) ( ( )) ( ) ( )( )p t b u t h t p t= + − ⋅ ⋅ − ⋅[ ]{ } ⋅− −ρ δ β β1 1
(24)

lim p t e h t
t

t

→+∞

−⋅ ⋅ =( ) ( ).ρ 0 (25)

The constraint (4) is also an optimality condition.
From the optimality conditions we arrive to the expression for the time move-

ment of u(t),
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˙( ) ( ( )) ( ) ( ) ( ) ( )( )u t b u t h t u t u t=
−

⋅ ⋅ ⋅ − ⋅[ ] − +{ } ⋅ ⋅ −[ ]− −1

1
1 11

β
β ρ δβ (26)

Equations (4) and (26) turn possible the presentation of the steady state under
the new assumptions,
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All the equilibrium values in (27) obey the necessary boundary conditions.
In the vicinity of the balanced growth path a two-dimensional linearized sys-

tem may be computed concerning the problem in definition 3:
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β δ β δ (28)

System (28) allows to prove proposition 2.

Proposition 2. Saddle-path stability. Under assumptions 1 and 2 the model that
relates the quantity and the allocation of human capital exhibits saddle-path sta-
bility.

Proof: For a two-dimensional Jacobian matrix as the one in system (28), saddle-
path stability means that one of its eigenvalues is positive (respecting to the un-
stable component of the system) while the other is negative (respecting this to the
stable path). Noticing the algebra result Tr(J)=λ1+λ2 and Det(J)=λ1.λ2, one has
just to obtain the signs Tr(J)>0 and Det(J)<0 to prove the expected stability
result. Computing the trace we realize that Tr(J)=ρ; the determinant is a negative
amount given that β<η/2 and η<1: Det(J)= − − ⋅( ) ⋅ ⋅ + −( ) ⋅[ ]1 2 1 1β δ ρ β δ . We
confirm in this way the existence of a saddle-path stable equilibrium■
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To understand how the endogenous variables jointly evolve towards the steady
state we make use of a graphical analysis through the construction of a phase
diagram. This analysis allows to prove proposition 3.

Proposition 3. Dynamic adjustment. Along the stable trajectory, the adjustment
to the steady state implies that a growing stock of human capital is accompanied
by a shift of human capital from the education sector to the technology sector. On
the other hand, if the stock of human capital per labor unit grows negatively then
this form of capital tends to be reallocated from the technology generation to the
education activities.

Proof: The proof of proposition 3 is made through the construction of a phase
diagram. To illustrate graphically the dynamics of the model we need to represent
two auxiliary lines: ˙( )h t = 0  and ˙( )u t = 0 ; these can be taken from the linear
system (28):

˙( ) ( )
( ) ( )

( )h t u t
u

h
h t= ⇒ =

+
+ − ⋅ −

⋅
⋅0

1 1ρ
ρ δ

β
β (29)

˙( ) ( )
( ) ( )

( )u t u t
u

h
h t= ⇒ = + − ⋅ ⋅

+
+ − ⋅0

1 2 1ρ β δ
ρ δ (30)

Under the assumptions of the model, line (29) has a larger slope than (30),
and the intercept of (30) is a higher value than the intercept of (29). Given that
∂ ∂ <˙( ) / ( )h t h t 0  and ∂ ∂ <˙( ) / ( )u t h t 0 , the following vector fields apply:

• to the right of line (29) the value of h(t) decreases and to the right of the
same line that value increases;

• to the right of line (30) the value of u(t) decreases and to the right of (30) it
increases.

The corresponding directional arrows are drawn below in the phase diagram
of Figure 1.

The directions to which the referred arrows point allow for an exact notion
about the stable trajectory location. The stable trajectory, as the unstable arm, is
upward sloped, being the slope of the first less accentuated than the one concern-
ing the unstable path. Drawing the phase diagram we confirm the saddle-path
stable nature of the relation between h(t) and u(t) and we find that the variables
evolve in the same direction towards the equilibrium point. If h h0 < , then h(t)
and u(t) grow positively until the point ( , )h u  is attained. The phase diagram is
sketched in Figure 1.
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To conclude the dynamic analysis we have interest in knowing how the tech-
nology growth rate evolves to the steady state given the stable path found for the
relation between h(t) and u(t). The growth rate is not an independent variable; it
relates to h(t) and u(t) through (22). Our dynamic analysis becomes complete
with proposition 4.

Proposition 4. Growth rate dynamics. In a technology choices model where the
gap variable is a given constant value, the dynamic adjustment to the steady state
where none of the variables h(t), u(t) and τ(t) grows is of the following kind: if
h h0 < in the neighbourhood of the steady state then h(t), u(t) and τ(t) all grow
at positive rates to the equilibrium position; if h h0 <  then τ(t) follows the same
negative growth behavior of h(t) and u(t).

Proof: Assume several possible τ(t) values, τ τ τ τ0 1< < < < <... ... n . From equa-
tion (22) follows that for any τi, i=1, …, n,

u t
a h ti( )

( )
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= ⋅ ⋅
−







⋅τ φ
φ

η
1

1

1
1

(31)

Equation (31) represents a concave function in the referential [h(t),u(t)] that
is as much far from the origin as the higher is the value of τi. Thus, we may draw

FIGURE 1
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in such referential a set of functions (31) for the various levels of τi. We regard
that as we approach the steady state, the value of τ(t) will be higher if we start
from the left of h , or lower if we start from the right of h . In this way, variable
τ(t) has a same qualitative behavior in the adjustment process as the control vari-
able u(t)■

Figure 2 elucidates the argument in the proof of proposition 4.

FIGURE 2

GROWTH RATE DYNAMICS

IV. Final Remarks

In this paper we have argued that physical capital accumulation plays just a
subsidiary role in terms of long run growth. The analysis focused on the two
central engines of growth, which are human capital accumulation and technologi-
cal diffusion. The way in which technological diffusion is modelled relies on the
Nelson-Phelps approach: the technology index to include in an aggregate produc-
tion function evolves in time according to a technological gap that relates to a
reference value that may be understood as the scientific frontier or state of the art
knowledge capabilities of the economy.

The major new modelling assumption is that the economy has the ability to
control the growth of the knowledge frontier, in the extent that public authorities
choose the level of basic R&D that is pursued in universities and state laborato-

u(t)

h(t)h

S

u

τ0

τ1

τn

τ



58 REVISTA DE ANALISIS ECONOMICO, VOL. 20, Nº 2

ries. This assumption makes sense if one thinks about a trade-off that is clear
from the technology resource constraint: to create knowledge less resources will
be available to apply knowledge, to apply knowledge it is necessary to devote
relatively less resources to its creation. In this way, the control of decisions about
technology creation is conditioned by the economic non controllable rules of tech-
nology adoption. The way we have chosen to study simultaneously the behavior
of human capital and technology variables leads to a two-sector optimal control
problem, from which we have withdrawn some meaningful results:

(i) In the steady state, state variables “technology gap” and “human capital effi-
ciency index” and control variables “growth rate” and “human capital share”,
they all display constant values.

(ii) The constant steady state result is possible only if one assumes human capital
decreasing returns in both the technology and the education sectors. In this
way decreasing returns become compatible with sustained growth.

(iii) Assuming a constant gap in terms of technology adoption, the model gives a
saddle-path stable result that implies that variables human capital index, hu-
man capital share and technology growth rate will evolve qualitatively in the
same way towards the steady state.

In what concerns welfare implications, the model makes a clear statement
about the role of the public sector in research and more generally in economic
growth. Without the incentive of the authorities in promoting scientific knowl-
edge, there would be no knowledge to apply, and therefore the economy would
stagnate. From a welfare point of view, our framework indicates the absence of
long run growth under a fully decentralized setup (without government interven-
tion) and positive growth, according to (21), when there is a management of re-
sources between public basic knowledge creation and private innovation and dif-
fusion processes.

One might argue that basic research is not a monopoly of the public sector;
many general purpose inventions are just the fruit of brilliant minds that took the
time to arrive to new results, without important financial incentives. In fact, this
is not questionable; however, it is also true that from a macroeconomic point of
view sustained economic growth became possible only when some important public
institutions were created. Today’s economic structures are not conceivable with-
out a basic R&D sector controlled and financed publicly; and therefore the knowl-
edge frontier does not move at a pace determined by a few altruistic geniuses.
Science is financed by public resources and governments decide in what extent
the science frontiers are stimulated.

A last word to the endogenous nature of the growth process. As we have
stated, to translate our analysis to an economic growth setup it is necessary just
to include a capital accumulation constraint and, eventually, an intertemporal
consumption utility optimization framework. In this way, the rate that describes
the technology variables evolution in time would simultaneously be the rate of
economic growth, under a steady state perspective. Thus, it is possible to talk
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about endogenous economic growth because the growth rate is determined endog-
enously (in fact, it is controllable under some resource constraints) and because
the several parameters that appear in its long run expression may be influenced
by the economic agents decisions, including the policy measures that the govern-
ment undertakes.

Nevertheless, the endogenous nature of our growth model is different from
the nature of the conventional growth models. First, only technology and educa-
tion decisions influence long run growth; factors as the eagerness to consume,
savings decisions or the rate of population growth are absent from the steady state
growth rate expression. Second, despite output, the physical capital stock and
technology all grow in the steady state, the human capital average efficiency does
not - under our assumptions the model is pessimistic about human capabilities,
that is, the way in which we may acquire more skills is bounded.

Notes

1 To highlight the innovation - diffusion process, we do not consider capital accumulation and
private consumption utility maximization. The introduction of these features would not consti-
tute any analytical obstacle; combining a Ramsey framework with the Nelson-Phelps setup, we
would have all of the most common ingredients on growth analysis. The point is that under a
Solow perspective of decreasing marginal returns in capital accumulation, this variable does not
add important information to long run growth analysis, which Solow indeed associated with
technical progress.

2 More accurately, the social planner is able to choose the amount of resources allocated to basic
research; it is expected that there will be a direct macro relation between such effort and the
obtained results, despite the uncertainty associated with the creative activity.

3 The social planner objective function reflects micro-level economic and social goals that individual
agents pursue. On one hand, bridging the gap between available and attainable techniques is an
instrumental objective of each individual firm. On the other hand, an ever-expanding scientific fron-
tier has not as single purpose to provide the conditions for a wider ready-to-use technology develop-
ment; it is also a way through which households acquire human capital that provides individual
satisfaction (scientific knowledge can be thought as an argument of the representative agent utility
function) and unique capabilities that offer to them a stronger position when facing labour markets.

4 By smoothness we mean that function v is differentiable and that the correspondent first order
derivative is a continuous function.

5 The symbol γ represents the growth rate of the variable referred in index.
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