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Abstract

An extensive family of univariate models of autoregressive conditional 
heteroskedasticity is applied to Peru’s daily stock market returns for the 
period January 3, 1992 to March 30, 2012 with four different specifications 
related to the distribution of the disturbance term. This concerns capturing 
the asymmetries of the behavior of the volatility, as well as the presence of 
heavy tails in these time series. Using different statistical tests and different 
criteria, the results show that: (i) the FIGARCH (1,1)-t is the best model 
among all symmetric models while the FIEGARCH (1,1)-Sk is selected from the 
class of asymmetrical models. Also, the model FIAPARCH (1,1)-t is selected 
from the class of asymmetric power models; (ii) the three models capture 
well the behavior of the conditional volatility; (iii) however, the empirical 
distribution of the standardized residuals shows that the behavior of the 
tails is not well captured by either model; (iv) the three models suggest the 
presence of long memory with estimates of the fractional parameter close 
to the region of nonstationarity. 

Keywords: Univariate autoregressive conditional heteroskedasticity models, 
Peruvian stock market returns, volatility, symmetries, asymmetries, normal, 
t-Student, skewed t-Student, GED distribution.
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Resumen

Una extensiva familia de modelos univariados de heterocedasticidad 
autorregresiva condicional es aplicada a los retornos bursátiles diarios 
del Perú para el periodo del 3 de enero 1992 hasta el 30 de marzo del 
2012 utilizando cuatro diferentes especificaciones para la distribución del 
término de perturbación. Con ello se trata de capturar asimetrías en el 
comportamiento de la volatilidad así como el tratamiento de colas pesadas 
en las series de tiempo. Utilizando diferentes estadísticos y criterios, los 
resultados muestran lo siguiente: (i) el modelo FIGARCH (1,1)-t es el mejor 
modelo entre todos los modelos simétricos mientras que el modelo FIEGARCH 
(1,1)-Sk es seleccionado entre la clase de modelos asimétricos. Asimismo, 
el modelo FIAPARCH (1,1)-t es seleccionado entre la clase de modelos de 
potencia asimétrica; (ii) los tres modelos capturan bien el comportamiento 
de la volatilidad condicional; (iii) sin embargo, la distribución empírica de 
los residuos estandarizados muestran que el comportamiento de las colas 
no es bien capturado por ninguno de los modelos; (iv) los tres modelos 
sugieren la presencia de larga memoria con estimados del parámetro 
fraccional cercanos a la región de no estacionariedad. 

Palabras clave: Modelos de heterocedasticidad autorregresiva condicional, 
mercado bursátil peruano, volatilidad, simetrías, asimetrías, normal, 
t-Student, t-Student sesgada, distribución GED. 

Clasificación JEL: C22, C52, C58, G12, G17.

I. INTRODUCTION

The Peruvian capitals market is undergoing expansion and constitutes an 
important part of the country’s economic and financial development. This market 
channels a large proportion of financial intermediation, which is a relevant mean of 
financing the productive activities of both public and private companies; moreover, 
it plays a fundamental role in guiding the decisions of investors and companies, 
with a view to ensuring that resources are assigned more efficiently; see Bahi 
(2007). A set of stylized facts on the stock market returns and volatility is discussed 
in Humala and Rodríguez (2013): absence of autocorrelation in the returns, fat 
tails of the empirical distribution, asymmetries in the volatility linked with past 
negative returns, Normality in the aggregation, clustering of periods of volatility, 
slow decay in the autocorrelation function (ACF) for absolute returns (either power 
of the returns or monotonic transformations thereof) which is consistent with the 
presence of long memory.

On explaining the dynamic of inflation in the United Kingdom, Engle (1982) 
formally introduces an autoregressive conditional heteroskedasticity model (ARCH), 
on the basis of which a series of extensions are developed. Bollerslev (1986) presents a 
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generalization of the ARCH (GARCH) process by allowing past conditional variances 
to be incorporated as regressors within the current conditional variance equation. 

In the financial markets, the expected return of an asset, in equilibrium, depends on 
its risk, which can be measured by its variance. In this way, the conditional variance of 
an asset can influence the conditional mean. Engle et al. (1987) develop an extension 
of the ARCH model by allowing the conditional variance to be a determinant of the 
mean (ARCH-M).

Another specification of these volatility models corresponds to the integrated 
GARCH model (IGARCH); see also De Arce (2000), and Engle and Bollerslev (1986). 
Baillie et al. (1996) introduce a fractionally integrated generalized autoregressive 
conditional heteroskedasticity model (FIGARCH). Thus, a new kind of process is 
developed in which the shocks to conditional variance decay at a hyperbolic rate 
determined by the parameter of fractional differentiation, rendering the conditional 
variance more flexible. 

The IGARCH and FIGARCH specifications are characterized by the non-stationarity 
of the volatility process. Nonetheless, this characteristic appears not to adequately 
fit the empirical properties of certain financial variables given the high degree of 
persistence implied by the integrated models. Thus, Davidson (2004) introduces the 
hyperbolic-GARCH (HYGARCH) model as a generalization of these models by 
assuming that the volatility process is stationary and long memory. 

Black (1976) finds that, frequently, the changes in the returns of assets are 
negatively correlated with changes in their volatility. It can also be noted that negative 
returns predict greater volatility than positive returns of the same magnitude. This 
means that there is an asymmetry that is usually attributed to so-called financial 
leverage effects. Thus, Nelson (1991) put forward a new kind of volatility model: 
the exponential GARCH, or EGARCH. This type of model takes into account the 
leverage effects, the negative correlation between volatility and current and future 
returns, the inadequate restriction of the non-negativity of the variance, and the 
persistence of shocks. 

Bollerslev and Mikkelsen (1996) propose a fractionally integrated extension 
of the EGARCH model of Nelson (1991), known as FIEGARCH; also see Pérez 
and Ruiz (2009). Meanwhile, Glosten et al. (1993) (GJR, 1993) modify the ARCH 
model to allow for the presence of unexpected positive and negative returns that have 
a different impact on the conditional variance; that is, asymmetric innovations. The 
GJR model allows both positive and negative innovations to produce different effects 
on the conditional variance and, thus, on the returns of assets (usually, the falls are 
longer and more sudden than the rises). 

Likewise, Ding et al. (1993) put forward a generalized extension of the ARCH 
model, which questions the reason for assuming a linear relationship of the conditional 
variance based on lagged squared residuals or lagged deviation. This new model 
is called asymmetric power ARCH (APARCH) and allows an estimation of the 
long memory parameter in the volatility and the asymmetry parameter or leverage 
effect. Finally, Tse (1998) constructs a model by extending the APARCH model to 
a fractionally integrated process (FIAPARCH), incorporating the fractional process 
in the conditional variance. 
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The empirical literature is extensive and we make no pretence at an exhaustive 
review here. Key references include Andersen and Bollerslev (1998), Bollerslev et 
al. (1992), Bollerslev et al. (1994), Engle (2001), De Arce (2004), Bollerslev (2008), 
and Laurent et al. (2010). However, to our knowledge, there are no studies of this 
type for the Peruvian case. 

Other authors such as Kim and Kon (1994) compare different ARCH specifications. 
They find that the GJR specification (1993) is the most descriptive for individual shares, 
while the EGARCH model is the most apt for explaining stock market indices. Engle 
and Ng (1993) conduct a study on the event impact curve (“news”). The results of the 
estimations suggest that the GJR model (1993) is the best parametric model against 
the EGARCH, which captures much of the asymmetries of the series. Likewise, David 
(1997) prefers the EGARCH model. 

Baillie and DeGennaro (1990) use a GARCH-M model to examine the relationship 
between the mean returns of a share portfolio and its conditional variance or standard 
deviation. Meanwhile, Koopman and Uspensky (2002) contrast ARCH-M volatility 
models with a stochastic volatility in mean (SVM) model. The authors present an 
empirical study on the intertemporal relationship between the share profitability 
index and their volatility for the United Kingdom, the United States, and Japan by 
finding a negative but weak relationship between the returns and their volatility in 
the current period. Giot and Laurent (2003) make use of an APARCH model based 
on an asymmetrical t-Student distribution to take into account the fat tails on both 
sides of the distribution of the returns. Moreover, Pérez and Fernández (2006) present 
an application of ARCH models to stock market returns of Colombia for the period 
2004 to 2006. Ávalos and Hernández (1995) make use of an ARCH model to analyze 
stock market returns in Mexico. López-Herrera (2004) evaluates the contribution of 
three models from the ARCH family to model the behavior of the Mexican stock 
market: a symmetric GARCH model(1,1) and two asymmetric TARCH(1,1) and 
EGARCH(1,1) models. 

In addition to stock market yields, GARCH models have been applied to study 
the behavior of exchange rate yields. Pozo (1992) shows that an increase in exchange 
rate volatility reduces commercial volume. Wang et al. (2001) establishes that the 
prices of many assets, including exchange rates, display periods of stability followed 
by strong fluctuations or interruptions. Moreover, Amigo (1997) makes use of an 
ARCH model to analyze whether they can adequately explain the volatility present 
in the Spanish exchange rate market for the period 1991-1993, finding evidence in 
favor of a GARCH(1,1) model. 

On the other hand, Koutmos and Theodossiou (1994) analyze the predictability 
and properties of the weekly percentage change in the Greek exchange rate with 
respect to the most traded currencies in the country. The analysis is carried out using 
an EGARCH-M model along with an exponential distribution. Moreover, Gonzáles 
and Viñas (1996) examine the statistical properties of the first logarithmic differences 
of the daily exchange rates for the period 1890-1995 and two sub periods. The authors 
find that both ARCH and GARCH effects are located within the conditional variance 
to a significant degree. On the other hand, Engle et al. (1990) attempt to explain the 
causes of volatility clustering in the exchange rates through the use of a GARCH 
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model to specify heteroskedasticity across the intra-daily market segments. Olowe 
(2009) investigates the volatility of the Naira/Dollar exchange rates in Nigeria using 
GARCH (1,1), GJR-GARCH(1,1), EGARCH(1,1), APARCH(1,1), IGARCH(1,1) 
and TS-GARCH(1,1) models. In addition, Mckenzie (1998) attempts to predict the 
volatility of the Australian exchange rate. His results suggest that the ARCH models 
generate a superior prediction when the squared returns of the exchange rate series are 
considered. Davidson (2004) finds evidence that backs this model for the exchange 
rates of Asian countries in the period 1994-2000, though he points to the FIGARCH 
model as being favored by a series of countries. It is seen that, unlike in the securities 
market, the shocks of appreciation and depreciation of the yen per dollar have similar 
effects on future volatilities (Tse, 1998); see also Conrad et al. (2011).

It is fair to say that Humala and Rodríguez (2013) represent our starting point 
and the beginning of a research agenda where the present document is the initial 
investigation with the most traditional econometric tools. It is a first attempt to 
explain some of the facts mentioned by Humala and Rodríguez (2013). In this paper, 
the models try to capture the clustering, asymmetries and heavy tails mentioned in 
the literature and mentioned or found in particular for the Peruvian stock market by 
Humala and Rodríguez (2013). However, the approach of Humala and Rodríguez 
(2013) is more of a statistical-descriptive type approach and there is nothing from 
the point of view of econometric estimation. That is why we estimate an extensive 
group of models, both symmetric and asymmetric and use different distributions for 
the error term with the objective of capturing the heavy tails already mentioned. We 
also include fractional models to capture the long memory feature.

Hence, in this paper, an extensive family of univariate models of autoregressive 
conditional heteroskedasticity is applied to Peruvian daily stock market returns for 
the period January 3, 1992 to March 30, 2012 (5,053 observations) with four different 
specifications related to the distribution of the disturbance term. This concerns capturing 
the asymmetries of the behavior of the volatility, as well as the presence of heavy tails in 
these time series. Using different statistical tests and different criteria, the results show 
the following: (i) the FIGARCH (1,1)-t is the best model among all symmetric models 
while the FIEGARCH (1,1)-Sk is selected from the class of asymmetrical models. 
Also, the model FIAPARCH (1,1)-t is selected from the class of asymmetric power 
models; (ii) the three models capture well the behavior of the conditional volatility; 
(iii) the model FIEGARCH (1,1)-Sk is the one with the best performance in terms of 
prediction; (iv) however, the empirical distribution of the standardized residuals shows 
that the behavior of the tails is not well captured by either model; (v) the three models 
suggest the presence of long memory with estimates of the fractional parameter close to 
the non-stationarity region. In fact, the models manage to capture the asymmetries, the 
long memory and to a lesser extent manage to capture the heavy tails. It is obvious that 
it is very difficult to find a model that can capture all the characteristics. But as we have 
already mentioned, this document is part of a larger agenda. At the same time of this 
investigation, we have some other progress already made in the direction of modeling 
volatility with particular emphasis on the characteristic of long memory.

The document is structured as follows. Section 2 briefly presents the models that 
are used in the empirical section. Section 3 displays and discusses the main empirical 
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findings. Moreover, based on different statistical tests, the primary models for the 
Peruvian stock market returns are selected. Section 4 presents the main conclusions. 

II.  THE MODELS

In general, {yt} being a series of returns, an autoregressive heteroskedasticity 
model can be defined as

yt = xt
'β + εt ,

εt | Ωt−1 ∼ f 0,σ t
2( ),

σ t
2 = g σ t−1

2 θ( ),σ t−2
2 θ( ),…;εt−1 θ( ),εt−2 θ( ),…;υt−1,υt−2,…⎡⎣ ⎤⎦ ,

(1)

where xt is a vector k × 1 of endogenous and exogenous explanatory variables included 
in the set of information Ωt−1 , β a vector k × 1 of unknown parameters, f(·) is a 
function of density, g(·) is a linear or non-linear functional form, and υt is a vector 
of predetermined variables included in Ωt . The conditional variance is a linear or 
non-linear function of the lagged values of σt, and εt  and of predetermined variables 
(υt−1,υt−2,...)  included in Ωt−1 .

Engle (1982) defined an ARCH process as εt = ztσ t , where zt is an independent 
and identically distributed process with E(zt) = 0 and Var (zt) = 1 Moreover, it is assumed 
that εt  is not serially correlated, has a mean 0 and a conditional variance equal to σ t

2  
changing over time with the equation of variance being

σ t
2 = w +

i=1

q

∑α iεt−i
2 . (2)

In order for the ARCH(q) process to be well defined, σ t
2 , ∀t has to be positive. The 

conditions of sufficiency to assure the positivity of the variance are given by w > 0 
and α i ≥ 0  for i = 1,…,q. An alternative way of describing the ARCH(q) process, 
according to Degiannakis and Xekalaki (2004), is given by: σ t

2 = w +α L( )εt2 , where 
L represents the lag operator and α L( ) =α1L +α2L

2 + ...+αqL
q .

In the GARCH model of Bollerslev (1986), it is found that

σ t
2 = w +

i=1

q

∑α iεt−i
2 +

j=1

p

∑β jσ t− j
2

(3)

where, using the lag operator L, the GARCH model(p,q) can be written as:

σ t
2 = w +α L( )εt2 + β L( )σ t

2 (4)
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which reduces the number of estimated parameters by imposing restrictions so that the 
conditional variance is positively defined: w > 0, α i ≥ 0  for i = 1,…,q and βi ≥ 0  for 
i = 1,…p and where α L( ) =α1L +α2L

2 + ...+αqL
q and β L( ) = β1L + β2L

2 + ...+ βqL
q.

The ARCH-M model of Engle et al. (1987) proposes that

yt = xt
'β +φ σ t

2( )+ εt , (5)

where φ σ t
2( )  represents the risk premium. The ARCH-M model is frequently used 

in financial time series where the expected risk depends on its return. The estimated 
coefficient of this risk helps to analyze the risk-return trade-off. 

The EGARCH model of Nelson (1991) is formulated in terms of the logarithm 
of conditional variance. Following Degiannakis and Xekalaki (2004), the conditional 
variance of the EGARCH(p,q) model is represented by

log(σ t
2) = w +

i=1

q

∑π ig
εt−i
σ t−i

⎛
⎝⎜

⎞
⎠⎟

, (6)

where π ≡ 1 . In turn, the model incorporates the asymmetrical relationship between 
the squared returns and the shifts in the volatility, rendering g εt /σ t( )  a linear 
combination of εt /σ t  and εt /σ t  Thus, we have:

g εt /σ t( ) = γ 1 εt /σ t( )+ γ 2 εt /σ t −E εt /σ t( ), (7)

where γ1 and γ2 are constant. Let us note that zt = εt /σ t  and E εt /σ t( ) = 2 / π . The 
innovation of the equation log(σ t

2)  will be positive (negative) when the magnitude of 
zt is larger (smaller) than its expected value. As Degiannakis and Xekalaki (2004) point 
out, a natural parametrization is to model the conditional variance as an autoregressive 
moving average model1:

log σ t
2( ) = w + 1+α L( )[ ] 1− β L( )[ ]−1 g zt−1( ). (8)

The GJR (1993) model specifies both the positive and negative asymmetry of the 
innovations through the incorporation of a dummy variable:

σ t
2 = w +

i=1

q

∑(α iεt−i
2 )+

i=1

q

∑(γ iSt−i
− εt−i

2 )+
j=1

p

∑(β jσ j−i
2 ), (9)

1 Or similarly: log σ t
2( ) = w + 1+ α iL

i
i=1

q∑( ) 1− β jL
j

j=1

q∑( )−1
γ 1 ε t /σ t( )+ γ 2 ε t /σ t −E ε t /σ t( )⎡⎣ ⎤⎦ .
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where γi for i = 1,…,q are parameters that have to be estimated, St
−  is a dummy 

variable that takes the value of 1 when ∈t−i< 0  and takes the value of 0 if εt−i > 0 . In 
other words, it recognizes the presence of “good” (εt−i > 0) and “bad” (∈t−i< 0) news 
by assuming that the impact of εt

2  on the conditional variance is different if ∈t  is 
positive or negative.

In the APARCH model of Ding et al. (1993) it is found that

σ t
δ = w +

i=1

q

∑α i ∈t−i
2 − γ i ∈t−i( )δ +

j=1

p

∑ β jσ j−i
δ( ), (10)

where δ > 0  and −1< γ i <1 ∀ i = 1,…,q. Moreover, w > 0,δ ≥ 0  and β j ≥ 0  j = 0,…,p. 
As detailed by Degiannakis and Xekalaki (2004), this model imposes a Box-Cox (1964) 
power transformation of the conditional standard deviation process and of the absolute 
asymmetric innovations. Within this expression, δ assumes the role of the Box-Cox 
transformation of σt while γi reflects the leverage effect. Moreover, this model has the 
peculiarity of including another seven ARCH models as special cases: (i) the ARCH 
model of Engle (1982) when δ = 2, γi = 0 (i = 1,…,p) and βj = 0 (j = 1,…,p); (ii) the 
GARCH model of Bollerslev (1986) when δ = 2, γi = 0 (i = 1,…,p); (iii) the GARCH 
model of Taylor (1986) and Schewert (1990) when δ = 1, γi = 0 (i = 1,…,p); (iv) the 
model of GJR (1993) when δ = 2; (v) the TARCH model of Zakoian (1994) when δ = 1; 
(vi) the NARCH model of Bera and Higgins (1993) when γi = 0 (i = 1,…,p) and βj = 0 
(j = 1,…, p); (vii) the log-ARCH of Geweke (1996) and Pantula (1986) when δ ⇒ 0 . 

The IGARCH model seeks to estimate the conditional variance of the financial 
time series in the event that this is integrated, I(1). This model was put forward by 
Engle and Bollerslev (1986):

σ t
2 = w +

i=1

q

∑α iεt−i
2 +

j=1

p

∑β jσ t− j
2 , (11)

σ t
2 = w +α L( )εt−i2 + β L( )σ t− j

2 , (12)

for α ii=1

q∑ + β j = 1
j=1

p∑  or α L( )+ β L( ) = 1 . The IGARCH model is based on a 

GARCH model(p,q) whose conditional variance displays a high degree of persistence, 
where the polynomial α L( )+ β L( ) = 1  has r > 0 roots and max(p,q)-r roots outside 
the unit circle.

In the FIGARCH model of Baillie et al. (1996), the specification is

φ L( ) 1− L( )d εt2 = w + 1− β L( )[ ]vt , (13)

where φ L( ) ≡ 1−α L( )− β L( )[ ](1− L)−d , 0 < d < 1 and vt =  ∈t
2 −σ t

2 .  The process {vt} 
is interpreted as the innovations for the conditional variance. Thus, the conditional 
variance of the process is defined as:
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σ t
2 = w[1− β L( )]−1 +{1− [1− β L( )]−1φ L( )(1− L)d}∈t

2

= w[1− β L( )]−1 + λ L( )∈t2 .

Bollerslev and Mikkelsen (1996) defined the FIEGARCH model as:

log σ t
2( ) = w +φ(L)−1(1− L)−d 1+α L( )[ ]g zt−1( ).

Similarly, Tse (1998) suggests the FIAPARCH model where the conditional 
variance is expressed as:

σ t
δ = w +{1− [1− β L( )]−1φ L( )(1− L)d}(∈t − γ ∈t )

δ .

Davidson (2004) introduces the HYGARCH model as a generalization of the 
IGARCH and the FIGARCH models. The HYGARCH model is given by

σ t
2 = w[1− β L( )]−1 + 1− 1− β L( )[ ]−1φ L( ) 1+α (1− L)d⎡⎣ ⎤⎦{ }∈t2 .

The HYGARCH model nests the FIGARCH model when α = 1, and the process 
is stationary when α < 1.

III. EMPIRICAL RESULTS

III.1. THE DATA

The series of stock market returns consists of 5,053 daily observations calculated 
using the General Index of the Lima Stock Exchange (IGBVL) for the period January 
3, 1992 to March 30, 2012. Moreover, in the volatility analysis of the stock market 
returns, there may be a presence of “day-of-the-week” effects; that is, effects related 
to the days on which stock markets open (Monday) and close (Friday) that can affect 
market volatility; see Alberg et al. (2008). Thus, dummy variables are introduced in 
the regression analysis. Many studies have documented the presence of these effects 
on financial markets; see Cross (1973), French (1980), Alexakis and Xanthakis (1995) 
and Peña, (1995), among others.

Figure 1 displays the stock market returns (Top Panel). The series exhibits periods 
of high and low volatility (clustering), representing a clear sign of the presence of ARCH 
effects. The middle Panel displays the ACF of the returns while the last Panel shows 
the ACF of the squared returns. This Figure presents clear evidence of long memory.

The unconditional distribution of the stock market returns is shown in Figure 2 
(Top Panel), and is compared with the Normal density. Its peak is higher (solid line) 
than the Normal density (dotted line). Moreover, it has fatter tails which can be seen 
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FIGURE 1

FROM TOP TO BOTTOM: DAILY STOCK RETURNS, ACF OF DAILY STOCK RETURNS  
AND ACF OF DAILY STOCK SQUARED RETURNS
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FIGURE 2

FROM TOP TO BOTTOM: DENSITY FUNCTION OF RETURNS, LEFT TAIL DENSITY OF 
RETURNS AND RIGTH TAIL DENSITY OF RETURNS
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on Figure 2 (middle Panel and lower Panel). In addition, the skewness (-0.139) and the 
kurtosis (10.571) -located above the values of 0 and 3, respectively, for a symmetric 
distribution, highlight this characteristic. This is an indicator of the presence of an 
asymmetric distribution with heavy tails.

The estimations of the models consist of two equations: one for the mean, which 
is specified as ARMA(p,q) models, for p, q = 0, 1, 2 and another for the variance, which 
is specified as ARCH(1), GARCH(1,1), EGARCH(1,1), GJR(1,1), APARCH(1,1), 
IGARCH(1,1), FIGARCH(1,1), FIEGARCH(1,1), FIAPARCH(1,1), HYGARCH(1,) 
and ARCH(1)-M. The objective is to find, firstly, the mean equation, and secondly, 
the best model for volatility within the ARCH specification. All models are estimated 
using four different specifications relative to the distribution of the disturbance term: 
Normal, t-Student, Skeweed, and generalized error distribution (GED).

In order to select the best models, the following statistics are used: (i) the LM-ARCH 
statistic to check for the presence of ARCH effects on the residuals of the models; (ii) 
four information criteria: Akaike (AIC), Schwartz (BIC), Hannan-Quinn (HQ) and 
Shibata (SH); (iii) the diagnostic statistic of Engle and Ng (1993) that investigates 
possible specification errors in the conditional variance equation. To test for the presence 
of leverage effects, the Sign Bias (SB) statistic is used, which examines the impact 
on the conditional variance due to the positive or negative innovations not predicted 
by the estimated model; the Negative Sign Bias (NSB) statistic, which focuses on 
the impacts of the negative innovations on the conditioned variance; and the Positive 
Sign Bias (PSB) statistic, which estimates the effect of the positive innovations. 
Finally, the joint statistic (JT), which indicates the benefits of the volatility model 
with respect to the three statistics aforementioned. These statistics test whether the 
negative or positive shocks on the conditional variance depend on their size and how 
they affect conditional volatility; (iv) the adjusted Pearson goodness-of-fit statistic, 
which compares the empirical distribution of the innovations with the theoretical. In 
order to carry out this process, it is necessary to classify the residuals in cells according 
to their magnitude. For observations i.i.d., Palm and Vlaar (1997) show that the null 
hypothesis of a correct distribution is limited between a χ r−1( )

2
 and a χ r−k−1( )

2
 where 

k is the number of estimated parameters; (v) the Residual-Based Diagnostic (RBD) 
statistic for detecting conditional heteroskedasticity suggested by Tse (2002); (vi) 
the Q statistic on the standardized residuals, and the squared standardized residuals.

III.2. RESULTS2

With respect to the mean equation, different specifications were tested out, and 
the best was found to be an AR(1) process. Moreover, with respect to the dummy 
variables linked to two weekdays (Monday and Friday), in most of the estimations these 
variables are statistically significant. In general their signs are negative, reflecting the 

2 The number of estimated models jointly to the different specifications of the distribution of the disturbance 
term, give rise to a large number of Tables. The complete set of these Tables is available upon request. 
In this paper, we only include the most important.
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fact that the returns and the volatility are, on average, lower on those days, especially 
on Friday3.

We start with the symmetric models. Starting with the ARCH(1) model and using 
the logarithm of likelihood, we find that the best performing model is between the 
ARCH(1)-t and the ARCH(1)-Sk. Nonetheless, the asymmetry coefficient of the t-Sk 
distribution is not statistically significant, so we reject this model. Under the four criteria 
of information, the ARCH(1,1)-t is better than the ARCH(1)-Sk model. On the other 
hand, the four models reject the null hypothesis of no ARCH effects, so a specification 
of this type for modeling the volatility of stock market returns does not seem adequate. 
The SB, NSB and PSB statistics are not significant in all situations; that is, the models 
would be correctly incorporating the positive and negative innovations. Nonetheless, 
the JT is not significant only in the ARCH(1)-N, with the rest of the models giving 
bad results with relation to the modeling of shocks on the conditional variance. The 
Q statistics applied to standardized squared residuals display a rejection of the null 
hypothesis. Finally, the Pearson Chi-Square goodness-of-fit statistic suggests that the 
ARCH(1)-t and ARCH(1)-Sk models do not reject the null hypothesis. In conclusion, 
the best model in this group would be the ARCH(1)-t. 

The results for the GARCH(1,1) family show that the asymmetry parameter of 
the Sk specification is not significant. Observing the four information criteria, we 
find that the best model is the GARCH(1,1)-t. The four models account for ARCH 
effects (the null hypothesis of no ARCH effects is not rejected). The RBD statistic 
with several lags helps us to analyze the presence of conditional heteroskedasticity 
in the time series, and we observe that the GARCH-t and GARCH-Sk specifications 
are not appropriate, while the two remaining do not present problems of this kind. 
Moreover, we analyze the presence of leverage effects by way of the SB, NSB, PSB 
and JT statistics, and it is seen that the effect of negative shocks on the conditional 
variance (NSB) are greater than the positive shocks (PSB) while the null hypothesis 
of the Joint Test (JT) is not rejected by all specifications. The statistics show that 
the asymmetric effect of the innovations is being captured to a large extent. In turn, 
the Q statistic applied to the standardized squared residuals does not reject the null 
hypothesis of no serial correlation at the 1% of significance in the four distributions. 
Moreover, the P statistic (with different numbers of cells) rejects the null hypothesis 
of a correct specification (both p-values) in the GARCH(1,1)-N and GARCH (1,1)-
GED models, while the remaining models do not reject the hypothesis. In summary, 
combining all criteria used, the best model would be the GARCH(1,1)-t.

Regarding the set of asymmetric models, in the EGARCH(1,1) model, the parameters 
β1 and θ1 and θ2 are significant, assuming the four distributions with the exception 

3 It is important to clarify that the main objective of this document is the modeling of volatility, that 
is, the second equation of the different models used. The first equation, that is, the equation of the 
mean of the returns is not the main objective in the sense that the returns have almost not persistence. 
We estimated ARMA (p,q) models for p, q = 0, 1, 2, however the use of an AR(1) model is completely 
sufficient. In fact, many times, estimates of the AR(1) parameter are very small and in many cases they 
are not significant. Given our basic interest in the volatility equation, and in order to save space given 
the extensive number of models estimated, we do not include more Tables and Figures.
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of the coefficient α1, which shows statistical significance only for EGARCH(1,1)-
GED and EGARCH(1,1)-Sk. Following the logarithm of likelihood, we find that 
the best performing model is the EGARCH(1,1)-Sk. Nonetheless, if we analyze 
the four information criteria, the EGARCH(1,1)-t displays a smaller BIC, while the 
EGARCH(1,1)-Sk displays a smaller AIC, SH and HQ. None of the four models show 
ARCH effects (the null hypothesis of the ARCH effects is not rejected). The RBD 
statistic indicates that the four specifications are appropriate. The EGARCH models 
adequately capture the non-symmetric effects of shocks on the conditional variance. 
Adding together the results of the Q statistic and the P statistic, we can conclude that 
the EGARCH(1,1)-Sk model is the best model in this category.

In the case of the GJR specification, the parameters α1 and β1 and γ1 are significant 
by assuming the four distributions. Analyzing the logarithm of likelihood, we find 
that the best performing model is the GJR(1,1)-Sk. However, if we analyze the four 
information criteria, we find that the best model is the GJR(1,1)-t. The four models 
do not find evidence of ARCH effects. The RBD statistic tells us that the GJR-GED 
specification is not appropriate, while the rest of the models have some problems 
with heteroskedasticity. The negative shocks on the conditional variance (NSB) are 
slightly greater than the positive shocks (PSB). Adding together the results with 
the Q statistic and the P statistic, we find that the best model for this specification 
is the GJR(1,1)-Sk.

In the case of the APARCH (1,1) specification, the parameters α1, β1 and γ1 and 
δ are significant by assuming the four distributions, and a high degree of persistence 
in variance is observed. As is the case with many models, the asymmetry coefficient 
of the APARCH(1,1)-Sk is insignificant and small, and as such this model cannot be 
representative. Following the logarithm of likelihood, we find that the best performing 
model is the APARCH(1,1)-Sk. If we analyze the four information criteria, the 
APARCH(1,1)-t is better than the APARCH(1,1)-Sk in the BIC and the HQ, while in 
the AIC and SH they are indifferent. The four models show evidence of an absence 
of ARCH effects. The null hypothesis of the RBD statistic is not rejected in all cases, 
so the specifications are adequate. The negative shocks on the conditional variance 
are more significant or greater than the positive shocks. In turn, the Q statistic on 
the standardized squared residuals show similar results to the other models. Finally, 
the P statistic establishes that the APARCH(1,1)-Sk model does not reject the null 
hypothesis. The results allow the APARCH(1,1)-t model to be selected.

The estimation of the IGARCH(1,1) models show that the parameters α1 and 
β1 are significant by assuming the four distributions. Following the logarithm of 
likelihood, we find that the best performing model is the IGARCH(1)-Sk. Under the 
four information criteria, the IGARCH(1,1)-t is the best, being indistinct from the 
AIC and the SH criteria. The four models have problems with respect to the ARCH 
effects remaining in the residuals. The RBD statistic establishes a correct specification 
for all models, above all in the RBD(2). There appears to be good modeling of the 
asymmetry of innovations. The Q statistic shows no evidence of autocorrelation in 
the residuals of the four models (at 1.0%). The P statistic allows the IGARCH(1,1)-N 
and the IGARCH(1,1)-GED models to be discarded. In consequence, we may select 
the IGARCH(1,1)-t model.
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The evidence of long memory between the stylized facts of the stock market returns 
suggests the estimation of fractional models. The estimation of the FIGARCH(1,1) 
models suggests that the parameters α1 and β1 are insignificant by assuming the four 
distributions. Observing the logarithm of likelihood, we find that the best model is 
the FIGARCH(1,1)-Sk, but the parameter of asymmetry is insignificant. The four 
information criteria, however, suggest evidence in favor of the FIGARCH(1,1)-t model. 
The four models show an absence of ARCH effects in the residuals, while the RBD 
statistic suggests that the four specifications are appropriate. The statistics based on 
the sign suggest that models of this kind capture well the behavior of the shocks on the 
conditional variance. The residuals do not show signs of autocorrelation in accordance 
with the Q statistic. The P statistic allows us to discard the FIGARCH(1,1)-N and 
FIGARCH(1,1)-GED models. The conclusion is the selection of the FIGARCH(1,1)-t 
model.

With respect to the estimations of the FIEGARCH(1,1) models, the parameters 
α1, β1 are insignificant, unlike the θ1 and θ2 by assuming the four distributions. 
Following the logarithm of likelihood, we find that the best performing model is the 
FIEGARCH(1,1)-Sk. At the level of the four information criteria, the FIEGARCH(1,1)-Sk 
model continues to exceed the FIEGARCH(1,1)-t. Moreover, three of the four models 
do not reject the null hypothesis of the ARCH effects, with the FIEGARCH(1,1)-t 
displaying problems. The RBD statistic does not reject the null hypothesis of a 
correct specification in each model, so problems of heteroskedasticity would not be of 
concern. The statistics based on the signs suggest that the FIEGARCH(1,1)-Sk model 
is correctly incorporating the positive and negative innovations at a distance from the 
model. The best model in the group would be the FIEGARCH(1,1)-Sk.

As regards the estimations of the FIAPARCH(1,1) models, the parameters α1 and 
β1 are insignificant, and the opposite occurs with the parameters γ1 and δ. The logarithm 
of likelihood shows that the best-performing model is the FIAPARCH(1,1)-Sk, but 
the four information criteria establishes that the best model is the FIAPARCH(1,1)-t. 
Both models are seen to be superior to the other two. The four models does not reject 
the null hypothesis of no ARCH effects. The RBD statistic suggests that the four 
specifications are correct. The asymmetric effect of the innovations is relatively well 
captured by the four specifications. There is no evidence of autocorrelation in the 
residuals, while the P statistic rejects the null hypothesis of a correct specification 
(both p-values) in the FIAPARCH(1,1)-N and FIAPARCH (1,1)-GED models. The 
best model would be the FIAPARCH(1,1)-t.

In the case of the HYGARCH(1,1) estimations, the parameters α1, β1 and α 
are not significant by assuming their four distributions. According to the logarithm 
of likelihood, we find that the best performing model is the HYGARCH(1,1)-Sk. 
Nonetheless, if we analyze the four information criteria we find that the best model is 
the HYGARCH(1,1)-t. The four models provide evidence for the absence of ARCH 
effects. The RBD statistic indicates that the specification is appropriate, and suggests 
that the leverage effects are adequately captured. There is no evidence of autocorrelation 
in the residuals according to the Q statistic. Moreover, the P statistic does not reject the 
null hypothesis of a correct specification (both p-values) in the HYGARCH(1,1)-t and 
HYGARCH(1,1)-Sk models. In this case, the HYGARCH(1,1)-t model is selected.
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Finally, estimations of the ARCH(1)-M models are performed, where the parameters 
are significant by assuming the four distributions. As with many previous models, the 
asymmetry coefficient of the ARCH(1)-M-Sk is insignificant and small, and so this 
model is not representative. Following the logarithm of likelihood, we find that the best 
performing models are both the ARCH(1)-M-t and the ARCH(1)-M-Sk, which have 
the lowest values. However, if we analyze the four information criteria, the ARCH(1)-
M-t is better than the ARCH(1)-M-Sk. The four models provide evidence of ARCH 
effects in the residuals. The positive shocks on the conditional variance are greater 
than the negative shocks. The Q statistic shows clear evidence of autocorrelation in 
the residuals estimated by the four models. They suggest a better performance of the 
ARCH(1)-M-Sk and ARCH(1)-M-t models. According to the criteria utilized, the 
model selected is ARCH(1)-M-t. It is important to mention that though we selected 
this model as a representative of the ARCH(1)-M family, the different statistics suggest 
a poor performance of this type of models. This is unsurprising, given that it concerns 
simpler ARCH models, only that the mean is modeled by including volatility. 

III.2.1. SELECTION OF MODELS

Given that the dependent variable changes in the different estimated models, the 
selection criteria of the models is applied in three different groups4. The first group, 
whose dependent variable is σ t

2 , is comprised of ARCH, GARCH, GJR, IGARCH, 
FIGARCH, HYGARCH and ARCH-M models. The second group, whose dependent 
variable is the log(σ t

2) , is comprised of EGARCH and FIEGARCH models, while 
the last group, whose dependent variable is σ t

δ , will be comprised of APARCH and 
FIAPARCH models.

Following the maximum likelihood criterion, the best model from the first group is 
the FIGARCH(1,1)-t. The best model in the second group is the FIEGARCH(1,1)-Sk, 
while in the last group the FIAPARCH(1,1)-t would be the representative. Moreover, 
analyzing the information criteria, they support the previous findings. It is important 
to note that all models selected belong to the group of fractional integration; that is, 
we have evidence of a long-memory process in the volatility. 

Within the first group, the models that do not reject the null hypothesis of no 
ARCH effects are GARCH(1,1)-t, GJR(1,1)-t, IGARCH(1,1)-t, FIGARCH(1,1)-t 
and HYGARCH(1,1)-t. In this sense, according to this criteria, the ARCH(1)-t and 
ARCH-M(1)-t models are discarded. Both the second and the third group provide 
evidence of the absence of ARCH effects in the residuals when the FIEGARCH(1,1)-
Sk, APARCH(1,1)-t and FIAPARCH(1,1)-t models are used. 

4 In order to be rigorous in the selection of the best models, we have selected the best model within each 
of the classes of models mentioned. Since the dependent variable is different in the three categories, it 
is not correct to choose a single model for the three categories. All the statistics and criteria used are 
valid within each category of models according to the respective dependent variable. Even an exercise 
of forecasts does not allow a solution because the forecasted variables are different. Furthermore, a 
forecasting exercise is not considered because is beyond the scope of the paper.
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Utilizing the RBD statistic, it is observed that only the FIGARCH(1,1)-t, 
HYGARCH(1,1)-t and IGARCH(1,1)-t models appear to correct the problem of 
conditional heteroskedasticity in the estimated residuals. On the other hand, the SB, 
NSB, PSB and JT statistic show the presence of leverage effects, which is equivalent 
to stating that these models largely capture the asymmetric effects of positive and 
negative innovations in the variance of stock market returns. With respect to the P 
statistic, this reveals that the empirical distribution of the innovations is adjusted to 
the theoretical distribution in all the models in the three groups analyzed. 

Based on the above-mentioned, we find that the best three models are the 
FIGARCH(1,1)-t, FIEGARCH(1,1)-Sk and FIAPARCH(1,1)-t, in each of the three 
groups analyzed, respectively. Figure 3 shows some interesting aspects. The conditional 
variance obtained from the three models show very similar behavior compared to 
the squared residuals which is a good indicator of adjustment of each of the models. 
On the other hand, the empirical density of the standardized residuals compared 
to underlying distribution used in the estimates (t-Student, Student-t and Skewed 
Student-t, respectively) still shows significant differences. The qq-plot confirms this: 
the behavior of the tails of the distribution of stock returns is not well captured by 
either model. Other ongoing research is looking to capture this aspect. 

It is important to emphasize the long-memory aspect in the time series analyzed. 
The three models allow an estimate of the fractional parameter d̂ = 0.467,  0.495,  0.467,
respectively. The three estimations are close to the frontier of the stationarity (0.5), 
and the three values indicate strong evidence of long memory. This result can be 
interpreted as strong evidence in favor of fractionally integrated models. Nonetheless, 
as the literature has pointed out, this behavior may be contaminated by the presence of 
sporadic or random level shifts; see Diebold and Inoue (2001), Mikosch and Stărică 
(2004a, 2004b), among others. From the standpoint of the application of statistics, see 
Perron and Qu (2010) and Qu (2011). From the standpoint of modeling, see Lu and 
Perron (2010), Li et al. (2016), and Xu and Perron (2014). Recent applications and 
research underway for the Peruvian and Latin American cases include Ojeda-Cunya 
and Rodríguez (2016), Rodríguez and Tramontana-Tocto (2015), Rodríguez (2016), 
Herrera and Rodríguez (2016), and Pardo and Rodríguez (2014). In the mentioned 
research, the results conclude that the volatility does not present long memory. Instead, 
the volatility is composed by a short memory component plus a random level shifts 
component. 

IV. CONCLUSIONS

It is fair to say that Humala and Rodríguez (2013) represent our starting point 
and the beginning of a research agenda where the present document is the initial 
investigation with the most traditional econometric tools. It is a first attempt to 
explain some of the facts mentioned by Humala and Rodríguez (2013). In this paper, 
the models try to capture the clustering, asymmetries and heavy tails mentioned in 
the literature and mentioned or found in particular for the Peruvian stock market by 
Humala and Rodríguez (2013). However, the approach of Humala and Rodríguez 
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FIGURE 3

FROM TOP TO BOTTOM: RESULTS OF FIGARCH(1,1)-T, FIEGARCH(1,1)-SK, 
FIAPARCH(1,1)-T. IN EACH PANEL (FROM LEFT TO RIGTH): STOCK RETURNS, SQUARED 

RESIDUALS, STANDARIZED RESIDUALS, CONDITIONAL VARIANCE, KERNEL OF 
STANDARIZED RESIDUALS VS DENSITY FUNCTION (T OR SK), QQ-PLOT
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(2013) is more of a statistical-descriptive type approach and there is nothing from 
the point of view of econometric estimation. That is why we estimate an extensive 
group of models, both symmetric and asymmetric and use different distributions for 
the error term with the objective of capturing the heavy tails already mentioned. We 
also include fractional models to capture the long memory feature.

Hence, an extensive family of univariate models of autoregressive conditional 
heteroskedasticity is applied to the Peruvian daily stock market returns for the 
period January 3, 1992 to March 30, 2012 (5053 observations) with four different 
specifications related to the distribution of the disturbance term. This concerns 
capturing the asymmetries of the behavior of the volatility, as well as the presence 
of heavy tails in these time series. Different criteria and statistics are utilized for the 
process of selecting the best models. Given the different nature of the dependent 
variable, the models have been selected separately. Finally, the selected models are 
the FIGARCH(1,1)-t, the FIEGARCH(1,1)-Sk, and the FIAPARCH(1,1)-t in each of 
the groups divided according to the structure of the dependent variable. The selection 
is interesting as it reflects the following aspects: (i) it is a model that captures the 
asymmetries and thus the leverage effects; (ii) it is a fractionally integrated model, 
which allows the evidence of long memory to be captured in the volatility of stock 
market returns; (iii) the distribution of the disturbance term is skewed, which allows 
us to approximate the behavior of the structure of the disturbance term.

In fact, the models manage to capture the asymmetries, the long memory and 
to a lesser extent manage to capture the heavy tails. It is obvious that it is very 
difficult to find a model that can capture all the characteristics. But as we have 
already mentioned, this document is part of a larger agenda. At the same time of this 
investigation, we have some other progress already made in the direction of modeling 
volatility with particular emphasis on the characteristic of long memory. In fact, it 
is important to emphasize the long-memory aspect unanimously fond in the three 
selected models in this paper. The three models allow an estimate of the fractional 
parameter d̂ = 0.467,  0.495,  0.467,  respectively. The three estimations are close to 
the frontier of the stationarity (0.5), and the three values indicate strong evidence of 
long memory. This result can be interpreted as strong evidence in favor of fractionally 
integrated models. Nonetheless, as the literature has pointed out, this behavior may 
be contaminated by the presence of sporadic or rare random level shifts; see Diebold 
and Inoue (2001), Mikosch and Stărică (2004a, 2004b), among others. From the 
standpoint of the application of statistics, see Perron and Qu (2010) and Qu (2011). 
From the standpoint of modeling, see Lu and Perron (2010), Li et al. (2016), and Xu 
and Perron (2014). Recent applications and research underway for the Peruvian and 
Latin American cases include Ojeda-Cunya and Rodríguez (2016), Rodríguez and 
Tramontana-Tocto (2015), Rodríguez (2016), Herrera and Rodríguez (2016), and 
Pardo and Rodríguez (2014).
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