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Abstract

The purpose of this paper is to compare the use of Quasi-Monte Carlo
methods, especially the use of recent developed (1, m, s)-nets, versus
classical Monte Carlo method for valuing financial derivatives. Some
research has indicate that under certain condition Quasi-Monte Carlo
is superior than the traditional Monte Carlo in terms of rate of conver-
gence and accuracy. In particular, theoretic results hinted that the so-
called (t, m, s)-net suppose to be the most powerful one among all the
Quasi-Monte Carlo methods when the problem is “smooth”. However,
the application of (1, m, s)-net was not included in the existing simula-
tion literatures. In this paper I will introduce the algorithms of generate
the most common Quasi-Monte Carlo sequences, then implement these
sequences in several path-dependent options. Our investigation showed
that Quasi-Monte Carlo methods outperform the traditional Monte Carlo.

I. Introduction

Monte Carlo method is widely used in pricing financial derivatives and measur-
ing their risks. One primary reason for this phenomenon is it is easy to apply and
this method for numerical integration gives errors, whose order of magnitude, in
terms of the number of nodes, is independent of the dimension. However the sto-
chastic nature of the Monte Carlo method causes some unpleasant drawbacks. For
example, it is difficult, if not impossible, to generate a sequence of high quality
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random samples, and also the rate of convergence is only proportional to N-'2
which is very slow. This motivates the search for methods which converge faster.

Some research has been done in this area and interesting results have been
obtained. For example, Paskov (1996) developed software to generate Sobol and
Halton quasi-Monte Carlo sequences and compared their performances with the
Monte Carlo method for mortgage-backed securities. Papageorgiou and Traub
(1996) analyzed various techniques for valuing a typical collaterized mortgage
obligation where the problem was reduced to numerically evaluating an integral
over a 360-dimensional unit cube and concluded that qaasi-Monte Carlo methods
converged significantly faster than Monte Carlo methods and attained small er-
rors, even while using a small number of points. Acworth, Broadie, and Glasserman
(1996) made a detailed comparison of some Monte Carlo and quasi-Monte Carlo
techniques for the pricing of moderate and high dimensional options. They found
that quasi-Monte Carlo methods outperform ordinary Monte Carlo methods. In
this paper we show that for three different types of options, the use of another
quasi-Monte Carlo technique, namely (¢, m, s)-nets, also outperforms Monte Carlo
methods.

The rest of the paper is arranged as follows: in Section II, we give some
basic definitions which are related to derivatives pricing, quasi-Monte Carlo and
(t, m, s)-net. In Section III, we introduce the exotic options to be valued. In
Section IV we discuss methods of constructing (¢, m, s)-nets and other Quasi
Monte Carlo sequences. Finally in Section V, we shall give some numerical com-
parisons results between the use of Monte Carlo methods and (¢, m, 5)- nets in
pricing the mentioned options.

1II. Monte Carlo and Quasi-Monte Carlo for Financial Derivative Pricing

The present value of any derivative security is the discounted value of its
expected terminal date cash flow:

Price = e'T E[A(S,, ..., Sl

where T is the maturity date of the derivative, E[.] is the expectations operator
under the risk-neutral measure, f is the derivative’s terminal date cash flow, which
may depend on the entire price history of the underlying asset, and S,,..., Sris
the history of prices for the underlying assets from ¢ = 0 to T. Here the expecta-
tion can be represented as an integration over a very high dimensional domain.
Therefore pricing any derivative security can be interpreted as evaluation a high
dimensional integral.

Monte Carlo and Quasi-Monte Carlo methods are the most commonly used
general method for high dimensional integral evaluations.

The idea underlying the Monte Carlo method is to replace the integral of S,
which is a continuous average, by a discrete average over randomly chosen points.
More precisely, we have the following approximation:

QUASI-MONTE CARLO ALGORITHM FOR PRICING OPTIONS i3
1 N
x)dx = — (x,) (N
Jis SO = G2 F
where x,, X, ..., Xy are random points which uniformly distribute on [0, 1]* . The

key issue is how to choose these points so that the error
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is as small as possible. The Monte Carlo method used random numbers and by
large number theory the expected error is O(N2) for N sample paths. )

One class of modified Monte Carlo methods are often known as quasi-Monte
Carlo (or low-discrepancy) algorithms. A quasi-Monte Carlo method alse approxi-
mates an integral by a discrete average, except that the random samples in the
Monte Carlo method are replaced by well-chosen deterministic no::m,. the low
discrepancy points. A quasi-Monte Carlo mwac_m:om can provide a E:e: _:_E.cé.a
convergence rate, close to O or even O(N¥?) in some special cases, Hr._m
improvement in convergence :ate has the potential for mmmimnm.i gains both in
computational time and in the range of applications of simulation Eaﬁroam. for
finance problems. In another word, a quasi-Monte Carlo method can be described
as a deterministic version of a Monte Carlo method in the sense that the random
samples in the Monte Carlo method are replaced by deterministic points so a
deterministic error bound can be established. Since all points are chosen explicitly
rely on number theory idea, the quasi-Monte Carlo methods are often called num-
ber theoretic methods.

Quasi-Monte Carlo or low discrepancy methods have received substantial
attention in the financial literature recently. Let us now present some fundamental
concepts which related to a quasi-Monte Carlo method or _.oi discrepancy se-
quence. Discrepancy is a measure of deviation from uniformity of a sequence of
real numbers. In particular, the star-discrepancy of N points x|, x5 ..., Xy €
[0, 1)%, is defined by

D(N)Y*=sup|A(J;N)  V(J)N|
J

Here A(J; N) is the number of 1, 1 £ n < N, with x, € J and V (J) is the volume
of the subinterval J and the supremum is extended over all subintervals J of the
form J = TTI:_,[0,1]. . .
A set of x;, x5, ..., xy € [0, |]¥ is a low discrepancy if Dy, (P)reaches its
lowest asymptotic ‘range, namely O(N-! (log N)¥) for all N > 1.
The following Koksma-Hlawka inequality establishes the relationship between
low discrepancy sequences and integration (see page 19 in Niederreiter, 1992):
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which holds for any function f of s variables that has bounded variation V (f) on
{0, 1)" and for any x|, ..., x,, € [0, 1)*. Some known low discrepancy point sets
include Sobol, Halton, Faure and (¢, m, s)-net. Roughly speaking, these points sets
all have the property that the rate of convergence is at least proportional to
N-'(log N)S. The N°! factor in the convergence formula for fow discrepancy points
may be contrasted with the N¥? convergence of Monte Carlo and suggest that
low discrepancy methods are superior to Monte Carlo methods (at least, in theory,
for not so large s).

ITI. Examples of Options

In this section we give examples of options whose payoffs allow closed-form
pricing or a numerical procedure so that one can obtain a precise value for the
option. We shall use three options to test our algorithm and report our results in
Section V.

Discrete down-and-out call. This is a barrier option on a single underlying
asset with payoff

Cp= SPAMﬂ - Nqov_

{minigigm M:. >H}

and price e”7 EICyl . Here K and H are constants and t, ..., t,, are points in
[0, T]. This is a standard call option struck at K unless the underlying asset is
below the barrier H at any of the monitoring dates ty, ..., t,, at which the option

is knocked out and the holder receives nothing. This option can be priced in
closed-form (see Hull (1997) for details).

Discrete average rate option. This is perhaps the simplest and most frequently
encountered option for which Monte Carlo methods are used as a primary pricing
for its payoff, which can be described as follows:

C, +max o,PMM: ~-K

m i

This is an option on the average price of the underlying asset over a fixed set
of monitoring dates. Its intractability arises from the fact that the sum of lognor-
mal random variables does not, in general, admit a closed-form distribution.
However we can get a close form solution of its surrogate check (page 466, Geman
and Marc Yor (1993) for detail).

A Multi-asset option. This example has the following payoff
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n

C,, = max| O,(J[S* -K |,

fZ
i=1

where .wT..; S are the terminal prices of m correlated assets, the geometric
average appearing in the payoff leads to a closed-form solution against which to
compare simulation results. Minor variations in the payoff function, however, lead
to pricing problems with no closed-form sotution.

IV. (¢, s)-sequence and (¢, m, s)-nets

We give the metheds for constructing low discrepancy point sets, especially
(t, m, s)-net. One class of low discrepancy sequence such as Sobol, Halton, Faure
are usually called (2, s)-sequence, and another class is (¢, m, s)-nets. According to
Niederreiter (1992), (¢, m, s)-nets yields the smallest discrepancy bound among all
the low discrepancy sets and hence, by the Koksma-Hlawka inequality, the small-
est error bound (within the class of functions of bounded variation in the sense of
Hardy and Krause) among all known constructions of point sets. Especially, within
the class of functions with rapidly converging Walsh series, Larcher and Traun-
fellner (1994) have shown that digital (¢, m, s)-nets yield an error bound of the opti-
mal order of magnitude. Therefore, by the Koksma-Hlawka inequality, (¢, m, s)-
net should be more efficient for high dimensional integral evaluation when it is
used with the quasi-Monte Carlo method.

Neiderreiter (1992) gives a general method for constructing (¥, s)-sequences;
here we give a example of constructing Faure sequence. For a prime number
b 2sand N =0, 1, 2,... consider the base b representation of N, i.e.,
N=27,a,(N)b', where a(N) € [0, b] are integers, i = 0, |, ... The j-th coor-
dinated of the points x, is then given by

. > Ny k1 .
X =Y a1 <,
i=0

irm_.m k%@u»n_ Hﬂc QMJQ%ZV. ‘;mBmiwﬁA:H Q.M.% is given by ﬁ..bu\%
P-1, where AW is a nonsingular lower triangular matrix and P! is the j—1 power
of the Pascal matrix.

Our main interest is to introduce the latest developed low discrepancy points,
the (¢, m, s)-net. There are many methods to construct (¢, m, s)-nets (sce Clayman,
et al. (to appear)). The most commonly used methods include: direct construc-
tions using various properties of finite fields and polynomials over finite fields,
error-correcting codes including both linear and nonlinear codes such as Kerdock
codes, combinatorial methods including generalized orthogonal arrays, and a method
which uses linear combinations of the rows of a so-called generator matrix (see
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Bierbrauer and Edel, 1998). We will focus our attention on this last method as it
is particularly suitable for parallel machine implementation. The purpose of our
current paper is the parallel computation, testing and analysis of nets for use in
high dimensional numerical integration problems that arise in finance, our pur-
pose is not to discuss the theory and techniques for the actual construction of
generator matrices which are described in Bierbrauer and Edel (1998). We thus
only briefly sketch the use of generator matrices in the construction of nets. The
idea of constructing a (£, m, s)-net using generator matrices is based on ideas
developed by Bierbrauer and Edel (1998), and described in their work. Here we
give a parallel version of the method. A (z, m, s)-net is obtained as follows. For
a prime number say b = 2. Consider a (¢, m, s)-net in base b = 2, find a generator
matrix from Bierbrauer and Edel (while the generator matrices are all binary and
thus have b = 2, a similar method could be used for nets in any prime power base
b by constructing generator matrices over the finite field F ;). The generator matrix
given in Bierbrauer and Edel (1998) is a matrix of m rows, and s blocks, where
each block consists of m —~t— 1 column vectors each of length m. Assume we are
working with p processors. Given m, we first need to distribute the set of points
N, =10, 1,2, ..,2"—1} evenly into all p processors. We need to decompose
this set into roughly p subsets with each subset containing roughly n, WT\%_
elements (here [E] represent the largest integer less than £). One naive strategy is
the following decomposition by cutting the original set into segments in a natural
order as follows: First let each process to take one of the first p numbers in the
set, namely {0, I, 2, ..., p—1}, and then repeat this process to the subset {p, p+1,
.....2p — 1} and continue until all the numbers are taken. For each i e N, the
processer that contains / calculates the base 2 expansion of § which is in the form
i=ay+a2+.+a,, 2% with a,=0or a,= 1. We,then form the modulo 2
linear combination. of the rows of the extended binary generator matrix corre-
sponding to the base 2 expansion of i. The coefficients in the resulting linear
combination are actually the digits in the binary expansion of i. Then we split
the result into s groups from left to right, each group having m —t digits. We
convert the values from each group from binary to the corresponding base 10
number and then multiply the resulting real vector (which has s entries) by 2.
This gives the i-th net point x,.

For detail and example of this construction we refer to Li and Mullen (2000).

V. Numerical Comparisons

In this section we compare the performance of the Monte Carlo method
with that of (1, m, s)-nets in the valuation of three classes of options: the dis-
crele average option, the multi-asset option in which all underlying assets are
independent and the multi-asset option in which all underlying assets have cor-
relation 0.3.

For the standard Monte Carlo method we use the random number generator
RANI1 from the Numerical Recipes in C. For the (1, m, s)-net method we will use

b
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the method of generator matrices from Bierbrauer and Edel (1998) as discussed in
Section IV. For the Faure sequence we generated by the mentioned method.

We perform our tests on problems with dimension s = 10 and we use N = 2!4
points. We use a (5, 14, 10)-net in base 2. In this example we have ¢ = §,
m = 14 and s = 10 and so the net contains 2'* = 16,384 points. The generator
matrix for our net was obtained from Bierbrauer and Edel (1998). We now com-
pare the performance of the ordinary Monte Carlo method using 2'4 points with
that of a (5, 14, 10)-net and Faure also using 2'* points. We can easily observe
from the following pictures the errors between the exact solution and Monte Carlo,
also the errors between the exact solution and (5, 14, 10)-net, the error between
the exact solution and Faure. The (5, 14, 10)-net and Faure obviously outperform
than Monte Carlo. From left to right these small pictures show the numerical
comparison on the discrete average option, the multiasset ow.:o: in which all
underlying assets are independent and multi-asset option in which all underlying
assets have correlation 0.3.

FIGURE 1

ERRORS BETWEEN THE EXACT SOLUTION AND MC (DASHED LINE)
AND NET (SOLID LINE)
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FIGURE 2

ERRORS BETWEEN THE EXACT SOLUTION AND MC (DASHED LINE)
AND FAURE (SOLID LINE)
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According to the tables from Clayman et al. (1999), the (5, 14, 10)-net has
the smallest known value of t for the given values m = 14 and s = 10. It is
however not known whether a (¢, 14, 10)-net in base 2 can exist with t = 3 or ¢
= 4, although it is known that t cannot be less than 3 in order for such a net to
exist. We remind the reader that for fixed m, the smaller the value of t the more
uniform is the distribution of points in [0, 1)'° and thus it’s possible that the
estimates given above could indeed be improved if a net with a smaller value of
t could be constructed.

VI Conclusion

The main focus of this paper is to introduce the use of (¢, m, s)-nets in valu-
ing derivatives. From the examples we have tested, the discrete average rate op-
tion, the multi asset option with no correlation, and the multi asset option with
0.3 correlation, it appears that Faure and (r, m, s)-nets outperform the ordinary
Monte Carlo method. But the comparison between Faure and (f, m, s)-net is in-
conclusive so far. So further investigation is of course required, for example,
more tests need to be run for higher dimensions s for different nets. Also these
methods need to be applied to other types of derivatives and securities. Such
testing is now underway.
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