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Abstract

Value at Risk (VaR) is a measure of the maximum potential change in
value of a portfolio of financial assets with a given probability over a
given time horizon. VaR became a key measure of market risk since the
Basle Committee stated that banks should be able to cover losses on
their trading portfolios over a ten-day horizon, 99 percent of the time.
A common practice is to compute VaR by assuming that changes in
value of the portfolio are normally distributed, conditional on past in-
formation. However, assets returns usually come from fat-tailed distri-
butions. Therefore, computing VaR under the assumption of conditional
normality can be an important source of error. We illustrate this point
with Chilean and U.S. returns series by resorting to extreme value theory
(EVT) and GARCH-type models. In addition, we show that dynamic
estimation of empirical quantiles can also give more accurate VaR es-
timates than quantiles of a standard normal.
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I. Introduction

Value at Risk (VaR) is a popular measure of market risk (see, for example,
Jorion, 2001), whose origins date back to the late 1980’s at J.P. Morgan. VaR
answers the question about how much we can lose with a given probability over
a certain time horizon. It became a key measure of market risk since the Basle
Committee stated that banks should be able to cover losses on their trading port-
folios over a ten-day horizon, 99 percent of the time. Financial firms usually use
VaR for internal risk control considering a one-day horizon and a 95 percent
confidence level.

More formally, VaR measures the quantile of the projected distribution of
gains and losses over a given time horizon. If α is the selected confidence level,
VaR is the 1– α lower-tail level. In practical applications, computation of VaR
involves choosing α, the time horizon, the frequency of the data, the cumulative
distribution function of the price change of a financial position over the time
horizon under consideration, and the amount of the financial position.

The assumption made about the cumulative distribution function of the price
change is key to VaR calculation. Some available methods are the following:
Riskmetrics, the GARCH approach, quantile estimation, and extreme value theory
(see, for example, Tsay, 2001, chapter 7). Riskmetrics assumes that the continu-
ously compounded daily return of a portfolio follows a conditional normal distri-
bution. The GARCH approach resorts to conditional heterocedastic models. If
innovations are assumed normal, quantiles to compute VaR can be easily ob-
tained from the standard normal distribution. Alternatively, if innovations are
assumed Student-t with υ degrees of freedom, standardized quantiles are used.
Quantile estimation provides a non-parametric estimate of VaR. It does not make
any assumption of the distribution of the portfolio return. There are two types of
quantile methods: empirical and quantile regression. Finally, extreme value theory
(EVT) has a goal to quantify the probabilistic behavior of unusually large losses,
and it has arisen as a new methodology to analyze the tail behavior of stock
returns (see, for example, McNeil and Frey, 2000; Zivot and Wang, 2003, chap-
ter 5).

Traditional parametric and non-parametric methods work well in areas of the
empirical distribution where there are many observations, but they provide with a
poor fit to the extreme tails of the distribution. This is evidently a disadvantage
because management of extreme risk calls for estimation of quantiles and tail
probabilities that usually are not directly observable from the data. EVT focuses
on modeling the tail behavior of a loss distribution using only extreme values
rather than the whole data set. In addition, EVT offers a parametric estimate of
tail distribution. This feature allows for some extrapolation beyond the range of
the data.

In this paper, we follow McNeil and Frey (2000) and estimate assets volatil-
ity with GARCH-type models and compute tails distributions of GARCH innova-
tions by EVT. This allows us to compute conditional quantiles (i.e., VaR), and
compare the EVT approach to other alternatives, such as conditional normal, t,
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and non-parametric quantiles. We find that the conditional-EVT approach is the
best to compute VaR. However, the conditional-t method can be a good alterna-
tive when the distribution is approximately symmetric and its tails are roughly
equal. In addition, we find that the empirical quantiles approach works well most
of the time. And, it is easy to compute.

The relevance of this paper is the following. Value at risk has recently be-
come a subject of major importance to the Chilean financial system. In particular,
last October the Superintendence of Financial Assets and Insurance of Chile
(Superintendencia de Valores y Seguros) gave special instructions to insurance
and re-insurance companies on how to asses monthly the market risk of all their
financial assets and real state using VaR.1 Consequently, a better understanding
of value at risk and the drawbacks involved in the traditional ways of computing
it are worth discussing. In addition, the more advanced techniques presented in
this paper deserved to be taken into consideration for refinements that govern-
ment authorities might consider in the future.2 Previous research in Chile has
focused mostly on a theoretical discussion of the use of VaR (e.g., Johnson, 2001).
On the other hand, recent studies of VaR for other Latin America economies have
utilized EVT, but they have the conditional-normal approach as the only bench-
mark (see, for instance, Bacchini, Rey, Belliard and García Fronti, 2003).

This paper is organized as follows. Section II presents a theoretical back-
ground on extreme value theory. Section III presents a description of the data and
our estimation results. Finally, Section IV summarizes our main findings.

II. Theoretical Background

Let X1, X2,.., Xn be identically distributed and independent (iid) random vari-
ables representing risks or losses with unknown cumulative distribution function
(cdf), F(x)=Pr (Xi≤x). Examples of random risks are negative returns on finan-
cial assets or portfolios, operational losses, catastrophic insurance claims, credit
losses, natural disasters such as floods, service life of items exposed to corrosion,
traffic prediction in telecommunications, etcetera (see Coles, 2001; Reiss and
Thomas, 2001; McNeil and Frey, 2000).

As a convention, a loss is treated as a positive number and extreme events
take place when losses come from the right tale of the loss distribution F. Let
Mn=max(X1,X2,…, Xn) be the worst-case loss in a sample of n losses. For a
sample of iid observations, the cdf of Mn is given by

Pr( ) Pr( , , ..., ) ( ) ( )M x X x X x X x F x F xn n
n

i

n
≤ = ≤ ≤ ≤ = =

=
∏1 2

1
(1)

An asymptotic approximation to Fn (x) is based on the Fisher-Tippet theorem
(1928). Given that x<x+, where x+ is the upper end-point of F (that is, the
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smallest value of x such that F (x)=1), Fn(x)→0 as n→∞, the asymptotic ap-
proximation is based on the standardized maximum value

Z
M

n
n n

n

= − µ
σ , σn > 0 (2)

where σn and µn are a scale and location parameters, respectively. The Fisher-
Tippet theorem states if Zn converges to some non-degenerate distribution func-
tion, this must be a generalized extreme value (GEV):
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The parameter ξ is a shape parameter and determines the tail behavior of
Gξ(z). If Zn converges to Gξ(z), then Zn is said to be in the domain of attraction
of Gξ(z). The shape parameter ξ is in turn determined by the tail behavior of the
cdf of the underlying data, F. If the tail of F declines exponentially, then Gξ(z) is
of the Gumbell type and ξ =0. In this case, distributions in the domain of attrac-
tion of Gξ(z) are of the thin-tailed type, such as the normal, log-normal, exponen-
tial, and gamma. If the tail of F declines by a power function instead, then Gξ(z)
is of the Fréchet type and ξ >0. Distributions in the domain of attraction of Gξ(z)
are called fat tailed distributions, which include the Pareto, Cauchy, Student-t,
and mixtures models. Finally, if the tail of F is finite then Gξ(z) is of the Weibull
type and ξ <0. Distributions in the domain of attraction of Gξ(z) are in this case
distributions with bounded support, such as the uniform and beta.

In practice, modeling all block maxima is wasteful if other data on extreme
values are available. Therefore, a more efficient approach is to model the behav-
ior of extreme values above a high threshold. This method receives the name of
peaks over threshold (POT). An additional advantage of POT is that provides
with Value-at-Risk (VaR) and expected shortfall (ES) estimates that are easy to
compute. As we know, VaR (i.e., the q-th quantile of F) and ES (i.e., the average
loss given that VaR has been exceeded), are commonly used risk measures.

Let us define the excess distribution above the threshold u as the conditional
probability

F y X u y X u
F y u F u

F u
yu ( ) Pr( | )

( ) ( )

( )
,= − ≤ > = + −

−
>

1
0 (4)

For those distributions F that satisfy that the cdf in (2) converges to (3), it
can be shown that for large enough u there exists a positive function β(u), such
that (4) is well approximated by the generalized Pareto distribution (GPD)
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where β(u)>0, and y≥0 when ξ≥0, and 0≤y ≤–β(u)/ξ when ξ <0.
For a given value of u, the parameters ξ, µ, and σ of the GEV distribution

determine the parameters ξ and β(u). In particular, the shape parameter ξ is in-
dependent of u, and it is the same for both the GEV and GDP distributions. If
ξ >0, F is in the Fréchet family and Hξ,β(u) is a Pareto distribution; if ξ =0, F is
in the Gumbell family and Hξ,β(u) is an exponential distribution; and, if ξ <0, F is
in the Weibull family and Hξ,β(u) is a Pareto type II distribution. In most applica-
tions of risk management, the data comes from a heavy-tailed distribution, so that
ξ > 0.

Estimates of the parameters ξ and β(u) can be obtained from expression (5)
by the method of maximum likelihood (ml). In particular, let x1, x2, …, xn be an
iid sample of losses with unknown cdf F. For a given high threshold u, extreme
values are those xi such that xi–u>0. Let us denote these values as x(1), x(2),…,
x(k), and define the excesses as yi–x(i)–u, i=1, 2,.., k. If u is large enough, then
y1, y2,…,yk may be thought of as a random sample from a GDP distribution with
unknown parameters ξ and β. (Hereafter, for simplicity the argument of β is
omitted). For ξ≠0, the log-likelihood for an iid sample is given by
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with yi≥0 when ξ >0 and 0≤yi≤–β/ξ. For ξ =0, the log-likelihood function sim-
plifies to

L k yi
i

k
( , ) ln( )ξ β β

β
= − −

=
∑1

1
.

The asymptotic properties of ml estimates apply here as usual.
In order to estimate the tails of the loss distribution, we resort to a theorem

which establishes that, for a sufficiently high threshold u, Fu(y)≈Hζ,β(u)(y) (see
Embrechts, Klüpperberg and Mikosch, 1997, chapter 3). By setting x=u+y, an
approximation of F (x), for x>u, can be obtained from equation (4)

F x F u G y F uu( ) ( ( )) ( ) ( ), ( )= − +1 ξ β (7)
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An estimate of F(u) can be obtained non-parametrically by means of the em-
pirical cdf

ˆ ( )F u
n k

n
= −

(8)

where k represents the number of exceedences over the threshold u. After substi-
tuting (7) into (8), we get the following estimate for F(x)
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where ξ̂  and β̂  are the ml estimates of ξ and β, respectively.

As mentioned earlier, two commonly used risk measures are the value at risk
(VaR) and the expected shortfall (ES). Both are usually computed for confidence
levels between 95 and 99.5 percent. That is, for 0.95≤q<1, VaRq is the qth quantile
of the distribution F

VaRq=F –1(q) (10)

where F–1 is the inverse function of F. For q>F(u), an estimate of (10) can be
obtained from (9) by solving for x

VaR u
q

k nq

∧
= + −
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1 (11)

The expected shortfall is the expected loss, given that VaRq is exceeded

ESq=E(X|X>VaRq)=VaRq+ E(X–VaRq|X>VaRq) (12)

The expression E(X–VaRq|X>VaRq) is the mean of the excess distribution
over the threshold VaRq. It can be shown that (see, for example, Coles, 2001)

E X VaR X VaR
VaR u

q q
q( | )

( )
− > =

+ −
−

β ξ
ξ1

(13)

provided that ξ<1. From equations (11) through (13), we obtain an approximation
to ESq
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In our estimation process, we follow McNeil and Frey (2000)’s two-step es-
timation procedure called conditional EVT:

Step 1: Fit a GARCH-type model to the return data by quasi-maximum likeli-
hood. That is, maximize the log-likelihood function of the sample assuming nor-
mal innovations.

Step 2: Consider the standardized residuals computed in step (1) to be realiza-
tions of a white noise process, and estimate the tails of the innovations using
extreme value theory. Next, compute the quantiles of the innovations for q≥0.95.

We assume that the dynamics of log-negative returns can be represented by

rt = µ + σtZt (15)

where µ is a constant term and Zt are iid innovations with zero mean and unit
variance, and marginal distribution FZ(z).

The conditional variance of the mean-adjusted series εt=rt–µ follows a
GARCH(1,1) process

σ β β ε γ σt t t
2

0 1 1
2

1
2= + +− − (16)

where β0>0, β1>0, and γ>0. Strictly stationarity is ensured by β1+γ<1.

Under the assumption of normally distributed innovations, the log-likelihood
function of a sample of iid observations becomes
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Standardized residuals can be computed after maximizing (17) with respect to
the unknown parameters µ, β0, β1, and γ
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where µ̂  and {ˆ , ˆ , ..., ˆ }σ σ σt n t n t− + − +1 2  are the pseudo-maximum likelihood estimates.
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The natural 1-step forecast for the conditional variance in t+1 is given by

ˆ ˆ ˆ ˆ ˆ ˆσ β β ε γ σt t t+ = + +1
2

0 1
2 2 (19)

where ˆ ˆε µt tr= − .

For a one-day horizon, estimates of the dynamic risk measures are
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where VaR Z q

∧
( )  and ES Zq

∧
( )  are given by equations (11) and (14), respectively,

applied to the standardized residuals series, and ˆ ˆ ˆ ˆ ˆ ˆσ β β ε γ σt t t+ = + +1 0 1
2 2 .

It is important to mention that, even if Zt is not truly normally distributed, the
maximization of (17) still provides consistent and asymptotically normal estimates
(see, for example, Engle and Gonzalez-Rivera, 1991). This result is the one upon
which McNeil and Frey’s approach relies.

III. Data

3.1 Descriptive statistics and preliminary results

We worked with the following series at a daily frequency, which are particu-
larly relevant to the Chilean financial market: the Index Price of Selective Stocks
(IPSA), which gathers the forty most traded shares on the Santiago Exchange,
Chile (sample period: 1990-November 2002); the Chilean peso/US dollar exchange
rate (sample period: 1988-2002); the spot price of copper (sample period: 1998-
2002); and, a proxy for a one-year zero coupon bond traded domestically (sample
period: 1993-2001).

Our proxy of a 1-year zero-coupon bond was constructed as follows. Daily
data of the average interest rate paid on 1-year bank (inflation-linked) deposits
are available from Bloomberg since 1993 approximately. Then the price on day

t of a zero-coupon bond that pays $ 1 in one year is P
rt
t

=
+
1

1 , where rt is the

annualized 1-year rate on day t.3 The return on the zero-coupon bond on day t is
defined as (Pt/Pt–1–1)*100. Data on zero-coupon bonds, with maturities of two,
three and four years, is available in the Chilean financial market on a daily fre-
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quency only since December 2001. Therefore, the time series were too short for
carrying out our estimation, and we preferred the proxy just described.

All computations of this and the following sections were programmed in the
S+FinMetrics module of S-Plus 6.1. Table 1 shows some descriptive statistics of
the daily returns on the above series. The mean return is close to zero for all of
the four series. However, they differ considerably in terms of both volatility and
tail thickness, which are quantified by the interquartile range and kurtosis, respec-
tively. In particular, the Ch$/US$ exchange rate and the proxy of a zero-coupon
bond return series exhibit both very low volatility and high kurtosis when com-
pared with the IPSA and copper return series.

Partial autocorrelations are mostly statistically insignificant for all return se-
ries from the thirteen lag onwards. This in turn translates into rejection of the null
hypothesis of a unit root. The assumption of normally distributed returns is strongly
rejected by all series, as Figure 1 suggests.

The next step was to fit a GARCH (1, 1) model of the sort described in the
previous section, and compute the standardized residuals for every return series
according to expression (18). Parameter estimates and specification tests of
GARCH(1,1) models are reported in Table 2, Panels (a) and (b). In general, all
parameter estimates are statistically significant, and the assumption of a strictly
stationary variance is satisfied. The Lagrange multiplier test (TR2) applied to each
series cannot reject the null hypothesis of “no residual ARCH”. The Ljung-Box
test in turn finds no evidence to reject the null hypothesis of no autocorrelation.

Given that a GARCH(1,1) specification cannot be rejected in any case, we
next set a threshold u for each individual series and assume that the (standard-
ized) residuals exceeding u follow a generalized Pareto distribution (GDP). Table
3 shows GDP estimates for both tails of the innovations for each of the four
return series. In each case, the number of points above the threshold u is 10
percent of the observations in each tail. (This is roughly the same percentage used
by McNeil and Frey, 2000).

Except for the innovations of the Ch$/US$ exchange rate returns, the shape
parameter ξ for losses (large positive residuals) and gains (large negative residu-
als) turns out to be statistically insignificant for the other three series. That means
that tail distributions in those cases do not departure substantially from the Gumbel
type (thin-tailed distributions). This can be also measured by the ratio of the
expected shortfall to VaR. For the 99-percent quantile, this ratio is 1.15 for a
standard normal (see McNeil and Frey, op. cit). As we see, except for the ex-
change rate return series, the expected shortfall to VaR is around 1.2 for losses
and gains. (The gains distribution of our proxy of a zero-coupon bond is slightly
more heavy-tailed although). This number is not considerably greater than that of
a N(0,1) distribution.

Panels (a) through (d) of Figure 2 shed more light on this issue. For all of the
four cases, the normal distribution understates the extent of large losses and gains.
The t distribution, on the other hand, overestimates large losses and gains for
IPSA, copper, and the 1-year zero coupon bond, but it does only slightly for the
Ch$/US$ exchange rate.
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TABLE 1

DESCRIPTIVE STATISTICS OF DAILY RETURNS

IPSA Ch$US$ Copper (Proxy) 1-year zero
exchange rate coupon bond

# observations 2,742 3,240 1,257 2,209

Mean 0.09% 0.03% – 0.01% 0.00%

Median 0.04% 0.03% – 0.06% 0.00%

Std. Dev. 1.32% 0.36% 1.22% 0.14%

Interquartile range 1.42% 0.28% 1.53% 0.10%

Minimum – 7.66% – 4.82% – 5.38% – 0.89%

Maximum 8.97% 4.34% 6.00% 1.70%

Kurtosis 3.90 24.47 1.64 29.67

Skewness 0.30 – 0.06 0.43 0.43

ρ1 0.251 0.132 – 0.093 – 0.224
(0.00) (0.00) (0.00) (0.00)

ρ2 – 0.041 – 0.012 0.001 – 0.069
(0.03) (0.49) (0.98) (0.00)

ρ3 0.003 – 0.003 – 0.012 – 0.053
(0.86) (0.88) (0.67) (0.01)

ρ4 0.025 – 0.034 0.055 – 0.055
(0.19) (0.05) (0.05) (0.01)

ρ13 0.047 0.016 0.026 0.006
(1.00) (1.00) (1.00) (1.00)

ρ26 0.016 0.015 0.023 – 0.037
(0.40) (0.39) (0.41) (0.08)

ρ60 0.021 0.010 0.014 0.014
(0.27) (0.55) (0.62) (0.51)

Jarque-Bera test 1,777.9 80,815.1 179.02 82,315.9
(0.00) (0.00) (0.00) (0.00)

Augmented Dickey- – 14.75 – 16.86 – 10.54 – 12.47
Fuller test (0.00) (0.00) (0.00) (0.00)

Notes: IPSA stands for Price Index of Selective Stocks, and gathers the 40 most traded stocks on the
Santiago Stock Exchange, Chile. The sample period for IPSA is January 1990-November 2002
(data source: Bloomberg, Central Bank of Chile); for the Ch$/US$ exchange rate is 1988-2002
(data source: Central Bank of Chile); for copper is 1998-2002 (data source: London Metal
Exchange); and, for the proxy of a 1-zero coupon bond is 1993-2001 (data source: Bloomberg).
ρj represents the autocorrelation coefficient of order j. P-values are between parentheses.
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FIGURE 1
HISTOGRAMS OF DAILY RETURNS

Daily returns on IPSA Daily returns on Ch$/US$ exchange rate

Daily returns on copper Daily returns on 1-year zero

TABLE 2

GARCH (1,1) PARAMETER ESTIMATES AND SPECIFICATION TESTS

(a) GARCH (1,1) models

Returns series µ̂ β̂0 β̂1
γ̂

p-value p-value p-value p-value
IPSA 7.5e-4 0.000 9.8e-6 0.000 1.2e-1 0.000 0.759 0.000

Ch$/US$ exchange rate 1.66e-4 0.002 2.9e-6 0.000 2.6e-1 0.000 0.544 0.000
Copper –1.15e-6 0.000 3.5e-6 0.000 3.5e-2 0.005 0.945 0.000

(Proxy) 1-year Zero 2.11e-5 0.150 4.8e-8 0.000 1.4e-1 0.000 0.834 0.000

(b) Specification tests

Returns series Lagrange multiplier test (TR2) for Test for ARCH effects
serial correlation (12 lags) (12 df)

p-value p-value
IPSA 17.27 0.14 16.75 0.16

Ch$/US$ exchange rate 0.21 1.00 0.22 1.00
Copper 7.53 0.82 6.98 0.86

(Proxy) 1-year Zero 13.02 0.37 13.91 0.34

Notes: The sample periods are the same as those described at the bottom of Table 1.

Note: Histograms are drawn with bin widths chosen by the Scott rule (see Venables and Ripley,
2002, chapter 5).
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TABLE 3

TAILS OF IPSA, $Ch/US$ EXCHANGE RATE, COPPER, AND 1-YEAR ZERO COUPON
BOND INNOVATIONS

(a) IPSA: 1990-2000

q=99%

Tail u ξ̂ s.e β̂ s.e Observations

quantile (xq) sfall sfall/xq

Losses 1.528 – 0.023 0.074 0.572 0.064 1,408 2.44 2.98 1.22
Gains 1.748 – 0.035 0.090 0.542 0.068 1,334 2.58 3.07 1.19

(b) $Ch/US$ exchange rate: 1988-2000

q=99%

Tail u ξ̂ s.e β̂ s.e Observations

quantile (xq) sfall sfall/xq

Losses 1.310 0.300 0.088 0.516 0.060 1,555 2.34 3.52 1.50
Gains 1.403 0.402 0.108 0.475 0.061 1,685 2.51 4.04 1.61

(c) Copper: 1998-2001

q=99%

Tail u ξ̂ s.e β̂ s.e Observations

quantile (xq) sfall sfall/xq

Losses 0.955 – 0.029 0.068 0.516 0.054 519 2.31 2.77 1.20
Gains 0.993 – 0.036 0.082 0.679 0.079 488 2.72 3.31 1.22

(d) (proxy) 1-year zero coupon bond: 1993-2001

q=99%

Tail u ξ̂ s.e β̂ s.e Observations

quantile (xq) sfall sfall/xq

Losses 1.529 – 0.012 0.096 0.613 0.086 981 2.58 3.17 1.23
Gains 1.724 0.033 0.158 0.794 0.156 742 2.89 3.78 1.31

Notes: ‘sfall’ stands for expected shortfall.
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FIGURE 2

TAIL BEHAVIOR OF INNOVATIONS

(a) IPSA

 (b) Ch$/US$ Exchange Rate
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Notes: the degrees of freedom of the t distribution have been determined in each case by fitting a
GARCH(1,1) model to the data assuming t innovations. They are the following: 8.9 for IPSA,
3.6 for the CH$/US$ exchange rate, 9.6 for copper, and 3.4 for the proxy of a 1-year zero
coupon bond.

(d)  (Proxy) 1-year zero coupon bond innovations

10
^-

15
  

  
  

 1
0^

-1
3  

  
  

 1
0^

-1
1  

  
  

10
^-

9  
  

  
 1

0^
-7

  
  

  
10

^-
5  

  
  

  
10

^-
3  

  
  

 1
0^

-1

10
^-

15
  

  
  

 1
0^

-1
3  

  
  

 1
0^

-1
1  

  
  

10
^-

9  
  

  
 1

0^
-7

  
  

  
10

^-
5  

  
  

  
10

^-
3  

  
  

 1
0^

-1

10
^-

15
  

  
10

^-
13

  
  

10
^-

11
  

  
10

^-
9  

  
 1

0^
-7

  
  

10
^-

5  
  

 1
0^

-3
  

  
 1

0^
-1

10
^-

15
  

  
10

^-
13

  
  

10
^-

11
  

  
10

^-
9  

  
 1

0^
-7

  
  

10
^-

5  
  

 1
0^

-3
  

  
 1

0^
-1

(c) Copper



EXTREME VALUE THEORY AND VALUE AT RISK 71

3.2 Estimation of VaR in-sample and out of sample

In this section, we follow an approach similar to Engle (2001)’s, but we
explicitly model the behavior of tails according to the EVT approach described
earlier. We used all observations except for the last two years to estimate the 99-
percent VaR in-sample. The last two years of the data were used for backtesting.
The results are depicted in Panels (a) through (d) of Figure 3.

The expected in-sample error is 1 percent. The log-negative returns on the
proxy of a zero-coupon bond (sample period: 1993-1999) and copper (sample
period: 1998-2000) exceeded VaR 0.87 and 0.99 percent of the time, respectively,
which is close to the expected. By contrast log-negative returns on the IPSA
(sample period: 1990-2000) and the Ch$/US$ exchange rate (sample period: 1988-
2000) tended to underestimate losses (0.61 and 0.77 percent, respectively) more
often than in the other two cases.

Estimation of the 99-percent VaR out of sample is computed without updat-
ing the parameter estimates previously obtained. Likewise, the 99-percent quantile
of the innovation distribution for each series is not recalculated either. The time
period for backtesting is 2001-2002 for all series except for the proxy of a zero-
coupon bond, which is 2000-2001. The value at risk is exceeded by the log-
negative returns on the IPSA and copper 2 and 5 times, respectively (that is,
0.42% and 0.66% of the time, respectively). This suggests that our measure of
risk is rather conservative, especially for the IPSA. This is not as true for the
Ch$/US$ exchange rate and the proxy of a zero-coupon bond, for which VaR is
exceeded 1.6% and 1.43% of the time, respectively.

However, as Engle points out, in this case it not easy to asses how accurate
a measure of risk VaR is out of sample. In particular, neither parameter estimates
nor quantiles incorporate the new information that becomes available in the
backtesting period. That is why in the next section we focus on a backtesting
procedure that dynamically adjusts quantiles, and that allows us to conclude sta-
tistically which way to compute VaR might be best.

3.3 Dynamic backtesting

In order to asses the accuracy of the EVT approach and alternative ways to
compute VaR, we backtested the method on the four return series described ear-
lier by the following procedure. Let r1, r2, …, rm be a historical return series. The

conditional quantile r̂q
t  is computed on t days in the set of T={n, …, m–1) using

an n-day window each time. The large of n we set depended on the sample size
of each returns series. For IPSA, the Ch$/US$ exchange rate, and our proxy of 1-
year zero coupon bond, n took on the value of 974, 992, and 999, respectively,
so that we had about the last four years of data for prediction. Given that the
daily series of copper only covered the period 1998-2002, we set n=504, so that
we had the last two years of data for prediction.
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In-sample (1988-2000), percent error: 0.62; Out-of-sample (2001-2002), percent error: 1.61.

In sample (1990-2000) percent error: 0.77; Out of sample: (2001-2002) percent error=0.42.

(b) Ch$/US$ Exchange Rate:

FIGURE 3

CONDITIONAL 99% VAR AND LOG-NEGATIVE RETURNS IN-SAMPLE
AND OUT OF SAMPLE

(a) IPSA
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In sample (1998-2000) percent error: 0.99; Out-of-sample (2001-2002): 0.66%

(d) (Proxy) 1-year zero-coupon bond

In sample (1993-1999) percent error: 0.88; Out-of-sample (2000-2001) percent error: 1.4

(c) Copper
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The constant k, which defines the number of exceedences above the threshold
u as described in section II, was set following McNeil and Frey (2000)’s ap-
proach. In particular, the authors set k so that the 90th percentile of the innovation
distribution is estimated by historical simulation. For instance, for copper we set
k=50.

On each day t ∈  T, we estimated a new GARCH(1,1) model and fitted a new
generalized Pareto distribution to losses, which were computed from the series of
standardized residuals. This procedure, as explained in Section II, is called con-
ditional EVT. In addition, we estimated the unconditional EVT quantile, which
corresponds to expression (11) applied to the return series.

The conditional normal quantile is simply given by zq=Φ–1(q), where Φ(.) is
the cdf of a standard normal. In turn the quantile of a Student-t distribution (scaled

to have variance 1) is given by z F qq W= − −( ) / ( )υ υ2 1 , where W follows a t-dis-
tribution with υ degrees of freedom (υ > 2). On each day t, we estimated a
GARCH(1,1) model with Student-t innovations and estimated a new υ and new
quantiles. The value at risk was computed according to formula (20) for both the
normal and t conditional cases.

If Zt is assumed to be distributed as t with υ degrees of freedom in equation
(15), the log-likelihood function of the sample becomes (see, for example,
Hamilton, 1994, chapter 21).
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(21)

where n is the sample size. This is a better approximation to the data generating
process in case observed returns appear to come from a (symmetric) fat-tailed
distribution. As discussed below, the t distribution works better in VaR estimation
than the conditional-normal approach.

The quantile estimate in t r̂q
t  is compared in each case with rt+1, the log-

negative return in t+1 for q ∈  {0.95, 0.99, 0.995}. A violation is said to take
place whenever rt+1> r̂q

t . We can test whether the number of violations is statis-
tically significant. In particular, let us consider the following statistic based on the
binomial distribution

Y

T
p

p p

T

Nd
−

−
 →

( )
( , )

1
0 1

(22)

where T=m−n and Y is the number of violations, so that Y/T is the actual propor-
tion of violations in the set T. The proportion p is the expected number of viola-
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tions under the assumption that Y ≡
∈
∑ It
t T

 ~B(T, p), where It r r Z z
t q

t
t q

≡ =
+ +> >1 1

1 1{ } { } ~Be(p),

and It and Is are independent for t, s ∈  T, t≠s.
Expression (22) is a one-tailed test that is asymptotically distributed as stan-

dard normal (see, for example, Larsen and Marx, 1986, chapter 5). If Y/T<p, we
test the null hypothesis of estimating correctly the conditional quantile against the
alternative that the method systematically underestimates it. Otherwise, we test
the null against the alternative that the method systematically overestimates the
conditional quantile.

Panel (a) of Table 4 presents backtesting results based on population quantiles
of 95, 99 and 99.5 percent. The conditional-t, conditional-normal, conditional-
EVT and the unconditional-EVT approaches were computed as described above.
Our rule is that the null hypothesis is rejected whenever the p-value of the bino-
mial test is less than 5 percent. Our results show that the conditional-normal
approach is the one that rejects the null hypothesis most often (in 7 out of 12
cases). As expected, this approach tends to work worse the higher the confidence
level. For instance, for the 99.5 percent quantile this approach rejects the null for
all return series except for copper. Bacchini, Rey, Belliard, and García Fronti
(2003) reached a similar conclusion when applying EVT to a US$100,000-invest-
ment on Telefónica de Argentina over 2001-2002. In particular, the authors find
that the normal distribution tends to underestimate the portfolio losses.

The conditional-t and the conditional-EVT approaches are the closest to the
mark: the former rejects the null hypothesis only once while the latter rejects it
twice. In particular, the conditional-t approach beats the conditional-EVT approach
for the 99.5 percent quantile of our proxy of the zero-coupon bond. In turn the
unconditional-EVT approach also works well: it rejects the null in 3 out of 12
occasions. Conditional- and unconditional-EVT estimates along with log-negative
returns are depicted in Panels (a) through (d) of Figure 4.

We also explore the performance of empirical quantiles when computing VaR,
an issue that is not addressed by McNeil and Frey. Panel (b) of Table 4 shows
backtesting using empirical quantiles. This procedure is similar to those described
above but, instead of parameterizing the tails of the innovation distribution,
quantiles are computed from the empirical distribution of standardized residuals
each time a new GARCH-model is fitted to the data. This procedure works well
(the null hypothesis is rejected in 3 out of 12 cases), and it is easy to compute.
In particular, unlike the conditional-normal approach, it takes account of the thick-
ness of tails. Again, the poorest fit is for the exchange rate (the null is rejected
twice), and for our proxy of a zero-coupon bond return series (the null is rejected
once). However, the null is never rejected for copper and IPSA.

Table 5 presents 99-percent value-at-risk estimates on September 13, 2001–a
particularly volatile period– for Ch$ 100-million portfolios invested on the IPSA,
the zero-coupon bond, the Ch$/US$ exchange rate and copper. The last column
of Table 5 also shows the actual losses. Only in one case, the 99-percent VaR
was inferior to the actual loss: the unconditional EVT method predicted a 99-
percent VaR of Ch$ 1,006,050 for the exchange rate portfolio, whereas the actual
loss was Ch$ 1,042,050.
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FIGURE 4

BACKTESTING: CONDITIONAL AND UNCONDITIONAL 99% VAR
ACCORDING TO EVT APPROACH

(a) IPSA: 1994-2002

Conditional EVT percent error: 1.14; Unconditional EVT percent error: 1.05

(b) Ch$/US$ Exchange Rate: 1992-2002

Conditional EVT percent error: 1.17; Unconditional EVT percent error: 1.31
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(c) Copper Sample period 2000-2002:

Conditional EVT percent error: 0.8; Unconditional EVT percent error: 0.53

(d) (Proxy) 1-year zero coupon bond: 1997-2002

Conditional EVT percent error: 1.3; Unconditional EVT percent error: 1.62
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TABLE 5

99-PERCENT VALUE AT RISK FOR A POSITION ON CH$ 100 MILLION ON
SEPTEMBER 13, 2001

Value at Risk Conditional Conditional Conditional Unconditional Actual Loss
t Normal EVT EVT

IPSA (Ch$) 3,254,391 2,974,173 3,402,162 3,545,392 1,790,046

Zero (UF) 54 40 47 29 15

Exchange rate (Ch$) 3,825,329 3,055,239 2,749,985 1,006,050 1,042,050

Copper (US$) 4,289 4,014 3,831 3,740 831

Notes: 1 UF was equivalent to Ch$16,022.5, and the exchange rate was Ch$678.8 per US$ on Sep-
tember 13, 2001.

TABLE 6

TABULATION OF RETURNS ON THE Ch$/US$ EXCHANGE RATE AND THE (PROXY)
OF A ZERO-COUPON BOND

(a) Ch$/US$ exchange rate

Cumulative Cumulative
Return value Count Percent Count Percent

[–0.06, –0.04) 1 0.03 1 0.03
[–0.04, –0.02) 2 0.05 3 0.08

[–0.02, 0) 1,654 44.26 1,657 44.34
[0, 0.02) 2,071 55.42 3,728 99.76

[0.02, 0.04) 8 0.21 3,736 99.97
[0.04, 0.06) 1 0.03 3,737 100.00

Total 3,737 100.00 3,737 100.00

(b) (Proxy) of zero-coupon bond

Cumulative Cumulative
Return value Count Percent Count Percent

[–0.01, –0.005) 12 0.52 12 0.52
[–0.005, 0) 925 40.17 937 40.69
[0, 0.005) 1,351 58.66 2,288 99.35

[0.005, 0.01) 11 0.48 2,299 99.83
[0.01, 0.015) 2 0.09 2,301 99.91
[0.015, 0.02) 2 0.09 2,303 100.00

Total 2,303 100.00 2,303 100.00
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Our results are similar in nature to those find by McNeil and Frey (2000),
although for their returns series the conditional-EVT approach never rejects the
null hypothesis. At this stage, it worth noticing that most rejections of the null
hypothesis occur for the exchange rate and our proxy of a zero-coupon bond
return series. As Table 1 shows, both are characterized by relatively low volatility
(e.g., the interquartile ranges of both series are much lower than those of the
IPSA and the copper returns series), and by very high kurtosis.

This can be easily seen in the corresponding histograms of Figure 1 and Panels
(a) and (b) of Table 6. For the exchange rate return series the 25 and 75 percent
quantiles are –0.12 and 0.16 percent, respectively, and 99.7 percent of the returns
are between –2 and 2 percent. The dispersion is even lower for our proxy of a 1-
year zero: the 25 and 75 percent quantiles are –0.048 and 0.047 percent, respec-
tively, and 98.7 percent of the returns are between –0.5 and 0.5 percent. In other
words, the low dispersion of returns along with the presence of a few outliers
would explain the relatively poor fit of tails in these two cases.

From the above analysis, one might be tempted to conclude that the condi-
tional-t method can be a good substitute for conditional-EVT in practical applica-
tions. We looked further into this issue, and found that the answer is no. As a
counter-example, we present VaR estimates for three U.S. indices: the Standard
and Poor (S&P) 500, the Wilshire 5000, and the Russell 3000.4  The sample periods
for the S&P500, the Wilshire 5000 and the Russell 3000 are, respectively, Janu-
ary 1980-December 2002, January 1991-December 2002, and January 1988-De-
cember 2002. All returns series are daily. The S&P 500 is both skewed to the left
(–1.83) and highly leptokurtic (43.12), while both the Wilshire 5000 and the Russell
3000 have low skewness (–0.26) and much lower kurtosis (close to 8.0).

Panel (a) of Table 7 shows that all quantile estimators do very poorly, except
for the conditional-EVT approach, which fails only once. (For instance, both the
conditional-t and unconditional-EVT methods fail 8 times out of 9 cases). The
prediction errors are particularly high for the Wilshire 5000 index: only in two
cases the null hypothesis is not rejected. Panel (b) shows in turn that the empiri-
cal quantiles approach behaves quite successfully for the S&P 500 and the Russell
3000, in that the null hypothesis is never rejected. Again, the poorest fit is ob-
tained for the Wilshire index.

In summary, according to our estimation results, the conditional-EVT approach
is the best to compute VaR. The conditional-t method can be a good alternative
to EVT when the positive and the negative tail of the return distribution are roughly
equal, as in the first four cases we analyzed. In addition, the empirical-quantile
approach works reasonably well most of the time.

IV. Conclusions

Value at Risk (VaR) is a popular measure of market risk, whose origins date
back to the late 1980’s at J.P. Morgan. VaR answers the question about how
much we can lose with a given probability over a certain time horizon. It became
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a key measure of market risk since the Basle Committee stated that banks should
be able to cover losses on their trading portfolios over a ten-day horizon, 99
percent of the time.

Traditional parametric and non-parametric methods work well in areas of the
empirical distribution where there are many observations, but they provide with a
poor fit to the extreme tails of the distribution. This is evidently a disadvantage
because management of extreme risk calls for estimation of quantiles and tail
probabilities that usually are not directly observable from the data. Extreme value
theory (EVT) focuses on modeling the tail behavior of a loss distribution using
only extreme value rather than the whole data set.

In this paper, we estimate assets volatility with GARCH-type models and
compute tails distributions of GARCH innovations by EVT. This allows us to
compute conditional quantiles, and compare the EVT approach to other alterna-
tives, such as conditional normal, student-t, and non-parametric quantiles. Our
results show that EVT outdoes a GARCH model with normal innovations by far.
The conditional-t method can be a good alternative to EVT when the positive and
the negative tail of the return distribution are roughly equal. In addition, GARCH
models with non-parametric estimation of quantiles give also more accurate VaR
estimates than the assumption of conditional normality, and they are easy to
compute.

Notes

1 Excluded from this computation are Chilean peso-denominated and inflation-linked financial assets
whose maturity does not exceed one year. (See Normal de Caracter General Nº 148,
Superintendencia de Valores y Seguros, available at www.svs.cl).

2 Page 11 of Normal de Caracter General No. 148 states that all observations must be within three
standard deviations from the average return in a particular month. If an observation does not meet
this requirement, it must be accordingly truncated. This procedure is certainly an arbitrary way to
deal with outliers.

3 This proxy of a zero-coupon bond is not truly riskless (or close to riskless) like a T-Bill. would
be.

4 The Wilshire 5000 is the most comprehensive stock of all U.S. indexes, encompassing small-cap,
mid-cap, and large-cap stocks. The index is comprised by over 7,000 stocks, and it is considered
a better representation of total market performance than the S&P 500. The Russell 3000 Index is
composed of 3,000 large U.S. Companies, as determined by market capitalization. This portfolio
represents approximately 98 percent of the U.S. equity market.
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