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Abstract:

This paper attempts to briefly discuss the current frontiers in quantitative
modeling for forecasting and policy analysis. It does so by summarizing
some recent developments in three areas: reduced form forecasting models;
theoretical models including elements of stochastic optimization; and identi-
fication, In the process, the paper tries to provide some remarks on the direc-
tion we seem to be headed,

Introduction

This paper attempts to provide a picture of the current frontiers in quantitative
modeling for forecasting and policy analysis. It does so by summarizing some recent
developments in three areas: reduced form forecasting models; theoretical models in-
cluding elements of stochastic optimization; and identification, I believe these devel-
opments are in the process of changing the ways economists think zbout methodology,
but this paper does not pay much attention to my views in that area'. Instead I try to
provide a concrete idea of what is going on in current research, with some remarks on the
direction we seem to be headed.

1. Macroeconomic Times Series Probability Structures

In carrying on the series of forecasts initiated by Robert Litterman and described in
his paper (1986), I have explored the probability structure of a nine variable system of

*  This is the Revista de Andlisis Econdmico Special Invited Lecture, delivered at the 8tH, Latin
American Meeting of the Econometric Society, San José, Costa Rica, August 2-5 1988. Research
supported by NSF grant SES 8608078,
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U.S. postwar macroeconomic time series. The immediate stimulus for the exploration was
the fact that, while the model Litterman used had done very well in forecasting unem-
ployment and output, it had done poorly —persistently making errors of the same sign—
in forecasting inflation. Other modelers, by informally adapring the structure of their
models to what they saw happening in the data, had consistently done better at antic-
ipating inflation. The challenge was to see if a model fit under the principles which had
motivated Litterman’s initial efforts could do better in tracking nominal variables.

The main principle to be adhered to was that the model should not invoke sup-
posed a priori knowledge which actually had been learned from the data. This meant
realistically modeling our prior uncertainty about the model structure and our beliefs
about how fast the prediction equations change through time. Litterman was allowing for
time variation in the model’s linear structure and was using a prior distribution on the
model’s form to explicitly document uncertainty about specification. The approach he
took is called the Bayesian Vector Autoregression (BV AR) approach.

Though in some respects the original BVAR modeling framework that Litterman
describes in his paper and that he, Doan and [ described in (1984} is more general than
commonly used econometric models, it is still restrictive. It assumes normal distributions
for disturbances to equations and to parameters. It assumes the covariance structure of
these disturbances is fixed. It assumes linearity of the one-step-ahead forecasting equa-
tions at each date. It assumes a simple random-walk form for the time variation in co-
efficients. An ideal Bayesian approach would recognize explicitly that we are uncertain
about all these aspects of the model. However any actual statistical modeling effort,
Bayesian or not, must compromise between accurately representing uncertainty and
keeping the model computationally manageable®. [ set out to relax some of the sim-
plifying restrictions in the original BVAR framework which might account for its poor
performance in forecasting nominal variables. I hoped at the same time to preserve as
much as possible of the framework’s computational convenience.

This is not the place for a detailed technical description of the results, which are
presented in a forthcoming discussion paper of mine (1988). The most important new
features of the model are that it allows for nonnormality in disturbances (with modest
cost in computational burden), and that it allows for variation over time in variances of
disturbances. Though the original specification allowed for varfation over time in the
parameters of the linear forecasting equations, the data implied that the time variation
was small. The new specification, when confronted with the data, implies considerably
greater time variztion in the forecasting equations. With assumed normal disturbances,
large forecast errors imply large changes in coefficients if time variation is assumed. The
assumed nonnormality of disturbances allows a damping of the effect of large forecast
errors on the estimated coefficients.

The likelihood function of the model implies that all three of these features
—-nonnormality, drifting variances, and increased time variation in forecasting equations—
are important to improved fit, As can be seen from Table 1, the model’s simulated
forecast performance over the historical data is roughly the same for real variables as that
of the original Litterman specification, and the performance for the GNP deflator is much
improved. The free parameters in the model have increased from about 6 to about 12;
that is, from Litterman’s. 67 parameters per equation the new model has moved to about
1.33 parameters per equation®.

The model is strongly nonlinear. A good index of a model’s nonlinearity is the degree
of nonlinearity in its impulse responses. In any forecasting model, a change in the data
will imply a change in the forecast. In a linear model the change in the forecast follows
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TABLE 1

THEIL U STATISTICS, 1949:3-1987:2

Current 9 variable model result listed above result for
6 variable model with no time varjation in each pair of rows.

Quarters ahead

Variable i 2 4 8
Treasury 9636 1.0379 9641 9950
Bill Rate 9467 9723 9567 .8576
M1 4661 4232 3767 3761
4807 4353 3968 4060
GNP .3892 3219 2850 2592
Deflactor 4471 4182 A436 4664
Real GNP 7618 6984 6968 6481
7523 7034 1022 6857
Business 8650 8791 9356 9548
Fixed Investment 9040 9382 5698 9305
Unemployment 1956 8554 9212 9775
8163 .8680 9568 1.0477
Trade-Weighted 9207 9640 1.0274 1.1715
Vatue of Dollar
S&P 500 Stock 8775 9016 9201 9915
Price Index
Commodity Price 7471 8036 8727 8758
index

Notes: The Theil U statistic is the ratio of the model’s root mean square forecast error (RMSE) to
that of a naive no-change forecast. Each forecast in the period is constructed from a model
cstimated using data up through the forecast date only, except that the 12 parameters of the
prior are chosen using the full sample,

the same pattern, regardless of the size of the change in the data; only the scale of the
change in the forecast varies with the scale of the change in the data.

Charts 1-3 display the impulse responses of the fitted model in three ways. In all
three the model is responding to a matrix of first-period impulses derived from the sample
covariance matrix of one-step ahead forecast errors. Chart 1 simply uses the end-of-
sample coefficient estimates as if they were fixed and displays responses to orthog-
onalized innovations as has been conventionally done in VAR analysis, This chart can be
thought of as a scaled-up display of the effects on the model’s projections of infini-
tesimally small current disturbances. Very small disturbances will have very small effects
on coefficient estimates and hence will have predicted future effects close to those
implied by current estimated coefficients. Charts 2 and 3 are calculated by taking the first
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period disturbances to be .5 and 1.5 times, respectively, the usual orthogonalized shock
matrices. These first period disturbances are fed in to the Kalman filter, coefficient
estimates are updated, and forecasts from the second period on are generated holding the
updated coefficients constant at their new values. If the model were approximately
linear, Charts 1-3 would be approximately the same. As can be easily seen, they are quite
different in certain respects. For example, the fixed-coefficient interest rate shock gen-
erates a persistent negative response in GNP, but the response is modest. The .5 stan-
dard error shock strengthens this response, making it larger and more persistent. (The
scale of the output response line increases by a factor of 5 or so between Charts 1 and 2,

so the response looks smaller, even though it is quite a bit larger). The 1.5 standard error.

shock eliminates the negative response of output to interest rates.

It does appear feasible, then, by allowing for time-variation in a model’s equations
and for nonnormality in disturbances, 1o obtain explicit probability models that seem
capable of doing as well at forecasting as the usual procedure of estimating a restricted
model whose structure is adapted informally to the data over time. The resulting explicit
models are likely to be strongly nonlinear and nonnormal. They have the advantages as
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forecasting models that they treat “specification uncertainty” explicitly and can
therefore give a more realistic picture of likely forecast error and that their forecasts
can be used without expert adjustment for reasonableness. They have the advantage for
economic science that they have a stronger claim to be a foundation for structural in-
terpretation than models in which much of the economic environment’s real randomness
is assumed away.

11. Behavioral Modeling

It has become the standard in macroeconomic theory to use aggregated general
equilibrium models in which agents face uncertainty and at least some of them optimize*.
Solving such models is computationally difficult, and as a result they have not often been
used directly for empirical modeling. This gap between macroeconomic theory and
macroeconometrics represents a challenge, however, and it is spawning a great deal of
promising research activity®.

The standard approach to stochastic optimization is dynamic programming, with the
problem’s state space discretized to allow casting the constraints into Markov form. This
approach grows more demanding computationally as the dimension of the problem
increases, and the rate of increase is particularly severe here. If we can successfully
handle a one-sector growth model with a single capital stock as state variable by con-
sidering an approximate problem with, say 50 distinct values for the capital stock, what
happens when we consider a model with two forms of capital? To retain the same degree
of refinerment in the discrete approximation in both dimensions of the state variable
requires 50* = 2,500 distinct points in state space. For three kinds of capital the number
is 125,000, etc. Nonetheless the method has been applied successfully. Larry Christiano®
has shown it to be quite feasible computationally for small macroeconomic problems
and Kenneth Wolpin and John Rust” among others have used it in applied work. George
Tauche® has developed methods for greatly speeding computations in certain problems
of this type by careful choice of the discretization.

The main prospect for avoiding the exponential growth in computational burden
with dimensionality in these problems appears to be in approximating the solution to
the original problem by a method which is not so sensitive to dimensionality. Kydland
and Prescott {1982) suggested a linear-quadratic approximation to the original problem
and work by Christiano suggests that for many macroeconomic problems the approxi-
mation error may be small. I have suggested modifying the problem so that the decision
rule is assumed or derived from the linear-quadratic approximation, and the distribution
of stochastic elements in the environment is then derived. Rust has suggested assuming
a form for the value function in dynamic programming, then deriving the implied form
of the objective function. Pam Labadie and Albert Marcet® have suggested methods based
on the idea of assuming an approximate form the expectations functions appearing in
the Euler equations, Ray Fair, Joseph Gagnon, and John Taylor'® have worked out an
approximate solution method which is feasible in large models with rational expectations
elements. There are a number of other people I know to be working in this area. 1 expect
that within 2-3 years there will be packaged programs available allowing simulation of
stochastic dynamic economic equilibrium models of up to 15 variables, in which some
agents optimize, on microcomputers.
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1II. Identification

I take the econometric identification problem to be that of finding a behavioral
interpretation of a probability model that allows it to be useful in guiding decisions’!.
Economists are taught the importance of identification in this sense as part of their
standard graduate training and are generally aware of the pitfalls of treating it informally.
This contrasts with the situation among statisticians, engineers, and natural scientists,
who tend to treat identification in this sense informaily.

The increased sophistication of reduced form time series cconometric models like
that described in section one and of fully interpreted behavioral models like those dis-
cussed in section II has not, unfortunately led to convergence in form of the two types
of model. Theoretical models do tend to be nonlinear, but in narrow, tightly param-
eterized ways. They may allow nonstationarity, but not the free-form drift of forecasting
equations of section I. They seldom focus attention on the distribution of disturbance
terms. Hard as they are to solve, they tend to generate implied behavior for the data
which is considerably less complex than what is implied by the best current reduced
form models.

This situation leaves two main possibilities for obtaining quantitative gnidance for
decision making in the immediate future: one can use a reduced form model with an
informal, approximate, or incomplete identification; or one can use a fully interpreted
behavioral model, connected to the data as well as possible but acknowledged not to
forecast as well as a good reduced form model. Academic economists tend to be exces-
sively suspicious of the former option, while the latter raises some conceptual difficulties.

While some economists tend to proceed as if theoretical models can yield policy
conclusions without any examination of how well they correspond to the data, few
would seriously defend this idea. But if fully interpreted behavioral models must for the
time being remain too simple to compete with reduced forin models in forecasting, the
data reject them all. If we decide we are willing to use a false model because we are more
confident of its interpretation, how do we choose among candidate models?

The procedure which ought in my view to be standard would compare behavioral
models to good-fitting reduced form models, measuring how unlikely is the stochastic
variation generated by the behavioral model under the distribution implied by the more
accurate reduced form model. One way to do this would be to simulate the behavioral
model using the current situation as initial conditions, generating a Monte Carle sample
of time paths for the economy from the current date t to t +k. The reduced form fore-
casting model can then treat these Monte Carlo paths as data, transforming each path
into a sequence of implied forecast errors for the reduced form model. The measure of
inaccuracy of the behavioral model is then minus the average log likelihood of the Monte
Carlo forecast errors using the reduced form model’s likelihood function. This approach
generates an absolute measure of distance between the behavioral model and the reduced
form and at the same time allows some diagnosis of the reason for lack of fit. The Monte
Carlo forecast errors may be especially targe for some subset of the variables, indicating
the behavioral model handles them incorrectly, or the Monte Carlo errors might show
cross-variable correlation indicating the relations among certain varisbles are mishandled,
for example?Z.

It may not be long before the solution methods discussed in section If are powerful
enough to allow treatment of models of substantial size with explicit modeling of mea-
surement and specification error, For the time being, though, it is likely that practical
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methods of macroeconomic policy evaluation will continue to rely on incomplete,
approximate or informal identification of reduced form models.

We do not need complete identification to evaluate policy. We do need an accurate
model of how changes in variables controlled by policy affect the rest of the economy,
but this does not require that we also understand all of the mechanisms by which they
have their effect. Thus a model can be useful for policy evaluation even if it does not
explicitly identify expectation-formation mechanisms. Econometricians often informally
assume that the observed variation in *“‘policy variables™ is statistically exogenous, so that
models can be simulated under given assumptions about the time paths of these variables
without explicit attention to possible implications of those time paths for the model's
stochastic disturbances. This practice can be misleading indeed it can be argued that
monetarist macroeconomics is essentially a mistake arising from fallacious identification
along these lines. Nonetheless it is not necessarily worse than mathematically more
explicit identification schemes which are limited by computational tractability.

Work by Blanchard and Watson (1984), Bernanke (1986), and me (1986) has shown
how identification based only on restrictions on the contemporaneous interactions among
variables can allow convenient behavioral interpretation of reduced form VAR models.
These methods do not generalize immediately to models with time-varying parameters,
but they probably can be generalized. This sort of identification foregoes some types of
identifying restrictions for the sake of computational tractability.

Economists are probably too suspicious of approximate, informal, or incomplete
identification. Exact, formal, complete identification based on mistaken assumptions
can lead to error fully as bad as inexact identification. Indeed honest reduced form model-
ing of uncertainty can partially compensate for inexact identifying assumptions, as is
illustrated in the next'section.

IV. The Robustness of Careful Empiricism

Here we re-examine the Kydland-Prescott (KP) example of the perils of ignoring
rational expectations. In that example policy makers use a false model and lead the
economy to a suboptimal, high inflation equilibrium in a vain attempt to reduce unem-
ployment by exploiting the Phillips curve. Of course policy makers who use a false model
will nearly always generate suboptimal policy, whether or not their model explicitly
fnvokes rational expectations. Nonetheless, the Kydland-Prescott example is misleading
in that its results depend on unrealistic naivete on the part of policy-makers. Policy
makers who use a flexible empirical model which makes reasonable allowance for uncer-
tainty can generate nearly optimal policy without allowing explicitly for rational expecta-
tions in their model.

In the simple Kydland-Prescott economy, the government controls the inflation rate
directly, except for a random component. Deliberately created variation in inflation has
no effect at all on unemployment, while random changes do affect unemployment. if
the government does not begin at the Kydland-Prescott suboptimal equilibrium, it must
get there by deliberately changing the inflation rate, These deliberate changes in the
inflation rate have no effect on the unemployment rate, and anyone plotting a scatter
diagram of inflation and unemployment during the period of active policy intervention
would observe the truth —a wezk relation between inflation and unemployment. Whether
or not the government understands or believes in rational expectations, observation of the
fact of this weak relation will lead it to nearly optimal policy —an inflation rate near

v
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zero. In the KP framework it is still true that the near optimal policy cannot persist —while
it is maintained, it generates spurious statistical evidence of an exploitable Phillips curve.

Though it does not undermine the KP conclusion about the nature of the unigue
equilibrium, the self-correcting tendency for policy intervention to generate statistical
data reflecting the true vertical Phillips curve means that convergence to the Kydland-
Prescott suboptimal equilibrium from a initial position with lower inflation is extremely
slow. Chart 4 shows the time path of an economy for which the KP equilibrium is 6 pet
cent inflation and 6 per cent unemployment, assuming the initial inflation rate is one
per cent. The upper part of the graph shows unemployment oscillating randomly about
six per cent, the natural rate in the model. The lower part shows the rising path of the
inflation rate. The parameters have been chosen to be more or less realistic for annual
data (see the Appendix). The vertical bars on the graph represent centuries. While the
economy moves in just a few decades from one per cent to three per cent inflation, the
remaining nine centuries of simulated data show a further move up only to a mean
inflation of less than four per cent.

But there is a further respect in which the KP model makes its data analysis unrea-
sonably naive. In the eventual equilibrium, policy makers retain confidence in an abso-
lutely fixed Phillips Curve, despite the evidence of drift in the Phillips curve during the
approach to equilibrium. Because they are willing to believe the Phillips curve is constant,
when their estimates tell them that no policy-generated change in inflation is appropriate,
they do not intervene. The equilibrium can persist only because their belief that an
intervention to change the inflation rate would have a precisely known effect leads them
not to intervene. If they did intervene, they would observe the ineffectiveness of interven-
tion and the equilibrium would be undermined.

There are many reasons why in reality policy-makers are unlikely to behave this
way. The simplest is that real economies do not retain constant structure, so that real
quantitative models are constantly adapting in form to recent history. If policy-makers
believe that the Phillips Curve is shifting in form, they will constantly change their
estimates of it, regardless of how long a sample of data is available. The changing esti-
mates will generate changes in policy, and the changes in policy will make the empirical
Phillips Curve more vertical, It is interesting, therefore, to modify the KP framework
by having policy makers us¢ a statistical model which allows explicitly for random
time-variation in the parameters of the Phillips curve. Instead of least-squares regression,
they use the Kalman filter to update their estimates of the Phillips curve.

I have no analytical results about the nature of equilibrium in such a modified KP
model, but it is easy to simulate it. Chart 5 shows the path of an economy exactly like
that of Chart 4 except with an allowance for random change in the parameters of the
Phillips curve (which begin at 2 and —1) with a standard deviation of .1 per year. Here
there is no tendency to approach the KP equilibrium. The model is constructed so that
the optimal policy would yield inflation fluctuating around 0 with a standard deviation
of .4. This simulation shows a mean of around two per cent with a standard deviation
of over one per cent. It is clearly not the optimum, but it is much closer to the optimum
than to the KP equilibrium of six per cent mean inflation.

Thismodified KP model seems to have two possible steady-state equilibria, one
around the original KP equilibrium another like the Chart 5 plot, with inflation oscillat-
ing around a mean near zero. Char 6 shows a simulation, differing from that of Chart 5
only in the relative amounts of time variation in constant term and slope coefficient
assumed in the Phillips curve, in which the inflation rate does rise to the KP equilibrium
level. It is thought-provoking that this result flows from policy-makers’ assuming that
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the “natural rate” of unemployment implied by the constant term in the Phillips curve
is highty variable through time.

Chart 7 shows that if the economy begins with policy-makers assuming a Phillips
curve like that of the KP equilibrium, it can break out of that situation. Note, however,
that breaking out of the KP equilibrium in this particular version of the model {with
somewhat more randomness in the natural rate and less in the inflation rate than in Chart
5) takes hundreds of years. Not every simulation run breaks out even over the thousand
year span of the simulation. By increasing the amount of time variation in the policy
makers’ model or by decreasing the size of random shocks to inflation relative to random
shocks in the Phillips curve, the KP equilibrium can be made less persistent and the low-
inflation mode of the model can be made to have a lower average inflation rate. On the
other hand, with smalt enough time variation or large enough random variation in infla-
tion, the model can be made to behave just like the original KP model, indeed with
somewhat quicker convergence to a KP-like equilibrium.

This modified KP model gives the policy-makers an only slightly less naive statistical
model, and this gives them a reasonable chance of generating policy close to the optimum.
The biggest element of naivete in the model is left unchanged, however. Policy-makers
presumably know at least approximately what they have done to the price level, and can
therefore see the difference between that and the actual price level. Suppose they modify
the Phillips curve regression so that it includes policy-generated inflation and uncontrol-
led random disturbances to inflation as two distinct variables. (In 2 more realistic model,
this might amount to distinguishing between changes in monetary policy variables like
reserves and controlled interest rates and related uncontrolled variables like the price
level.) Then they are using a statistical model which is actually structural: the true regres-
sion function has a coefficient of zero on policy-induced inflation, and this is the actual
effect of policy-induced inflation on unemployment, regardlessof how the policy is
generated.

With this structural Phillips curve model, policy makers of course are likely to quickly
learn the true Phillips curve parameters and settle into the optimal policy equilibrium,
It is interesting to note, however, that if they make no allowance for time variation,
they can still settle into a suboptimal equilibrium, If estimates lead them to confidence
in a nonzero coefficient on government-induced inflation, they may set the policy variable
at a nearly fixed suboptimal value. Steadily increasing collinearity between the policy
variable and the constant term then can prevent them from learning the true value of the
coefficients'®.

Note that to achieve this perfect result, policy-makers do not have to understand
that because of rational expectations the effect of policy-induced inflation on unemploy-
ment i zero. They do not even have to model expectation formation. They need only
have a correct understanding of what variable in the economy they control and be able
to estimate regressions of the outcome variables they are interested in {(price and unem-
ployment) on the variable they control.

While this simple model cannot be taken seriously as applying to U.S. historical data,
it does I think contain lessons on pitfalls in interpretation of those data. Economist
who have used large econometric models in forecasting claim that implied Phillips curves
in those models quickly became steep after the 60’s, so that there is no basis for the
notion that the inflation of the 70’s arose from misguided pursuit of low unemployment
along a flat econometric Phillips curve. The simple model in this section shows this could
be true; the econometric models could have quickly adapted to give the right answers
on policy choices without having incorporated rational expectations into their structures.
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And indeed this seems reasonable. The actual history of inflation and employment in
the US. in the 1970’ and 80°s {see Chart 8) seems unlikely to have allowed long
persistence of any econometric illusion of a stable inflation-unemployment tradeoff.

V. Remarks on Computation

Most of the developments surveyed in this paper are related to the increased avail-
ability of computational power, and the 9 variable model deseribed in section i, for
example, is ordinarily estimated and simulated on a Cray 2 supercomputer. Nonetheless
these developments should not be regarded as esoteric methods useful only to those few
economists with easy access to a supercomputer. The 9 variable model does not at all tax
the capacity of a supercomputer. lts likelihood function can be evaluated in about
20 seconds on the Cray 2. A six variable version of the same model can be evaluated on
an AT in about 35 minutes. The ¢ variable model itself can probably be handled on an
80386 PC with one of the new operating systems that can address over a megabyte of
memory.

,E_W distance between large and small computers tends to be exaggerated. A Cray 2
has 256 milliont 8-byte words of memory, compared to about one million words on the
most advanced PC’s. Yet most economic models have storage requirements-that grow at
least cubically, sometimes quartically with model] size. The 9 variable model’s specifica-
tion grows cubically with the number of variables, so if 2 9 variable model hits memory
limits on high-powered PC’s, a model with about 60 variables hits limits on the Cray 2.
Indeed if the model specification is generalized to take account of cross-equation cor-
relation of disturbances, the storage requirements become guartic in model size, so that
a six-variable model on a PC corresponds to 24 variable model on a Cray 2. While these
are substantial differences in model size, they are not so great that methods developed
for use with supercomputer sized models are irrelevant to work on a PC.

The same considerations apply to methods for mode] solution like those in section
II. Dynamic programming with discretized state space, growing exponentially in storage
requirements with model size, can easily grow from PC to supercomputer size with the
addition of just a few new state variables.

The biggest and fastest computers will make a crucial difference to some problems,
but for most problems the difference will be a modest increase in potential scale, not a
qualitative difference. The improvements in computer technology imply that quantitative
economic modeling is likely to change even in locations where only personal computers
are available.

V1. Conclusion

Already forecasts and policy analyses are being carried out with probability models
that take account of specification uncertainty. It is likely that such models will become
more common and relieve econometricians of some of the burden of monitoring their
models for breakdown of equations and unreasonable forecasts. It is not yet standard
for macroeconomic theorists to fully explore the behavior of their models with computer
simulations, but developments in this area are proceeding so rapidly that this could
change within just a few years*®.

As both these developments proceed, we will have to be rethinking the meaning
and methodology of identification. It should be interesting.
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Notes
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See (1986), (1982) for my views on those issues.

Because the Bayesian approach points directly to an optimum use of available data for any well-
defined problem of inference, while classical approaches easily allow discussion of the properties
of simple but inefficient estimators, the Bayesian approach tends to be regarded as difficult to
apply. Tt is possible, though, to consider approximate computations or inference based on easily
computed summaty statistics, within a Bayesian framework. The fundamental distinction is that
a Bayesian approach encourages formal treatment of what econometricians call “specification
uncertainty” ~-uncertainty about the form of the model.

It is important to understand the distinction between patameters and coefficients in this kind of
2 model, The 11 free parameters are the only aspect of the model that is adjusted to conform to
the data in the process of “fitting™ it. The forecasting equations ateach date nonetheless contain
414 coefficients, and these are modeled as different at each date. The coefficients are treated as
random variables like the equation disturbance terms. The parameters are the parameters of the
distribution of these random variables, The 12 free parameter ought, from the perspective of a
Bayesian purist, also to be treated as random variables and given a distribution. The practice of
choosing a single setting of these parameters which has high likelihood can be justified only as
a convenient approximation to postulating a prior over the parameters and integrating them out
of the posterior p.d.f. This is the Bayesian version of the problem os “overfitting”. If there are
too many free parameters, the peak of the likelihood withrespectto the free parameters will be
unrepresentative of the “average” behavior of the model over likely values of the free parameters,
it seems probable that 12 parameters treated informally this way is not toe many in a model
with about a thousand data points, but clearly moving from 6 to 12 free parameters increases
the need to check for overfitting.

By “general equilibrium™ here 1 mean only that a complete environment of technotogical pos-
sibilities and assumptions about human behavior is specified and the implications for resource
allocation derived, not necessarily that rationality or competitive markets are assumed.

Because most of the work cited in this section is still unpublished and still unfinished, I will
often cite names and institutional affiliations rather than particular papers.

Minneapolis Federal Reserve Bank.

University of Minnesota and University of Wisconsin, respectively.

Duke University.

Columbia University and Carnegie-Mellon University, respectively.

Yale University, Board of Governors of the Federal Reserve, and Stanford University, re-
spectively.

“Identification” as used in statistics, and sometimes in econometrics, concerns the mathematical
question of whether all the parameters of the model can be determined from a large enough
sample of data. Econometricians have commonly worked with 2 “reduced form” model construct-
ed to be statistically convenient (and in particular to be statistically identified) and a more easily
interpreted model called a “structural modei™. The question of identification is then the treated
as the question of the nature of the mapping linking structural and reduced form models. This
mapping is the economic interpretation of the reduced form probability model,

The procedure described here, linked to simulation starting from a particular date’s initial condi-
tions, is essential if either the reduced form or the structural model is nonstationary. If not,
simulations could be based on arbitrary initial conditions and carried out long enough so that
both models’ behavior has settled into steady state patterns.

Again, 1 have no analytical result. In simulations sometimes such an equilibrium sometimes
persists through a thousand “years™, but sometimes it persists for a few hundred and then breaks
up to yield to the optimal equilibrium with inflation oscillating about zero. Whether it eventually
breaks up with probability one I don’t know.

Fconometricians have not commonly been trained in the mathematical of the new reduced form
forecasting models, which may limit their use even after they become feasible. Macroeconomic
theorists have now commonly been trained in the mathematics of stochastic equilibrium models,
so if simulating them becomes easy, it is likely to spread quickly.
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Appendix
The Extended Kydland-Prescott Model

The model used to generate the simulations of Charts 4-7 assumes that unemploy-
ment U(t) satisfies

U(t) = 6.0 + &(t) ')

where e is ii.d. normal with variance Qmu. It supposes that policy-makers believe that U

is related to inflation  according to
U =0y - Bym(t) + (1), )

where they assume »(t), e, and B, to be normally distributed stochastic processes satisfy-
ing

e, =ey_; + m) 3
B, =By + M),

with 7;, 72, and ¥ jointly normal, mutually uncorrelated, and iid. over time. The va-
riances of 0, and 1, are labeled Qw and Qw. The government beging with a prior mean
& for « and f for § and a diagonal prior covariance matrix for « and § which gives « va-
riance of 1 and B a variance of .1. The policy authority is assumed to update its estimates
of & and § at each date, then use them as certainty equivalents to minimize the expected
value of m(t)* +u(t)*. This means they set the controflable portion of inflation at t,
¥(t—1), equal to the current estimate of Bef(1+8%). There is an uncontrollable com-
ponent ¢(t) to inflation as well, so that actual inflation satisfies

m(t)=y(t—1) + ¢(t) , “
with ¢ i.id. N(O, 03 ).

The settings of these parameters for the simulations shown in the charts are a5
follows:

Chart O ay oy 0y ag a 5
4 S5 1 0 0] 4 2 1
5 5 1 1 1 4 2 1
6 S5 A 1 2 4 2 1
7 N 1 1 1 3 12 1
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