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Abstract:

This paper discusses how the Bayesian approach can be used to construct a
type of multivariate forecasting model known as a Bayesian vector auto-
regression (BVAR). In doing so, we mainly explain Doan, Litterman, and
Sims (1984) propositions on how to estimate a BVAR based on a certain
family of prior probability distributions, indexed by a fairly small set of
hyperparameters. There is also a discussion on how to specifv a BVAR and
set up a BVAR database. A4 4-variable model is used to fllustrate the BVAR
approach.

Introduction

Economic forecasting models are based on a combination of human insight and :
statistical analysis, but the question of how best to combine these elements remains, in k
practice, unresolved. Their combination cannot be avoided. Given the limitations of
hurnan brains and economic databases, the potential linkages among economic variables
are too numerous to be accurately gauged by either human reasoning or statistical analysis
alone. The traditional solution to this degrees of freedom problem has been more or
Iess, to use reasoning to select a small set of coefficients thought to represent the most
important linkages among variables, to assume all other linkages can be ignored (by
fixing their coefficients at zero), and then to estimate the chosen coefficients from the
data, Bayesian statistical theory suggests a different approach: include as many linkages
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~and thus coefficients— as your computer can handle; then use human insight to over-
come the degrees of freedom problem by specifying a set of prior beliefs that supplement
the data. Prior beliefs and data then jointly determine the estimated values of all the
coefficients.

This paper discusses how the Bayesian approach ean be used to construct a type of
multivariste forecasting model known as a Bayesian vector autoregression (BVAR)!.
Since the idea of specifying prior beliefs about the numerous coefficients of a mul-
tivariate forecasting model is rather daunting, the key to the BVAR approach is to
simplify this task. To that end, Doan, Letterman, and Sims (1984) have proposed that a
certain family of prior probability distributions, indexed by a fairly small set of “hyper-
parameters”, can adequately represent modelers’ prior beliefs in most cases. They have
shown how to estimate 2 BVAR, either when the modeler picks a particular member of
their family of prior distributions or in the not uncommon case where the modeler has
no strong beliefs (i.e., flat priors) about which members of this family of possible prior
distributions are most appropriate. The explanation of their suggestions, in Section 2,
forms the core of this paper. However, the BVAR approach to economic forescasting
has implications, as well as a set of conventional procedures, for how the data in 2 model
are selected and transformed. For that reason, and for completeness, Section 1 discusses
how to specify a BVAR and set up a BYAR database. A 4-variable model is used to
iltustrate the BVAR approach.

Section 1: Specifying 2 BVAR

In the simplest form of a BVAR, n lags of each variable in the model appear in each
equation. In that case, model specification consists of picking n and a data series for each
variable, Even more complicated BVARs generally consist of blocks of equations that
have the simple form or skight variations of it, so the links between model specification
and database preparation remain quite direct. For that reason, I will discuss the basics
of specifying a BVAR through a step-by-step discussion of setting up a BVAR database.
In many ways the considerations and conventions used by BVAR modelers are the same
as those used by other forecasters, except that somewhat different criteria are used in
deciding which variables to include in the model.

What is the Purpose of the Model?

The first step in specifying any forecasting model including a BVAR, is to state as
precisely as possible the goal of the forecasting exercise. At a minimum, the forecaster
presumably wishes to produce accurate forecasts of at least one variable, and often more.
I will refer to these variables as the variables of interest. They shouid be identified at
the outset, and a loss function over their forecast errors could also be specified.

Frequently the forecaster wants not only to forecast accurately but also to claim
that his or her forecasts incorporate the effects of one variable on another. (Note that
this desire may be independent of, or even conflict with, the desire to forecast a set of
variables accurately.} After QOctober 19, 1987, for example, forecasters had to indicate
whether their forecasts reflected that day’s crash in the stock market, Incorporating
such cross variable linkages rules out one fairly effective class of pure forecasting models
—those which forecast each variable of interest by means of 2 univariate ARIMA model,
Instead the modeler will need a multivariate model to estimate the linkages among the
variables of interest and/or between those variables and z set of other variables which
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affect the variables of interest but are not of direct interest themselves. I will refer to
these other variables as related variables. ]

The forecaster may be even more ambitious and wish not only to incorporate but
also to separately identify the causal linkages among variables. For example, forecasters
may wish 10 say not only that their forecasts reflect the m.ﬁon_n.aﬁwﬁ crash _Em also that
they know by just how much the crash affected each variable’s mo_,mommm. In ﬂ.?w case the
estimated multivariate model will have to be augmented by a mm,m of amn:mom:.o.a re-
strictions on the model's coefficients and/or covariance B».Eonm. These additional
restrictions provide a unique relationship between the moamma:_m .Bo%_ and a model
of the underlying structure of the economy. Meaninful what-if questions can .n_an be pos-
ed in the structural form of the model and traced through to the oo:.,ommoua:.m forecast-
ing model, producing what are known as conditional forecasts. To estimate the effects
of the stock market crash, for instance, the forecaster 8£a use the structural model
to pase the question of what the current cczoow.ioﬁa _wn _.*. the mﬁo%.am-_nma. had rama
steady at its October 18th level. Without Eaa..m@uam ﬂ.‘o&:n:oar what-if questions can’t
be posed, and the forecasts are said to be unconditional. Modelers owz say that z._mmn
unconditional forecasts include the effects of the stock market crash®, but they can't

identify what those effects are.
movm..mﬁw_w:m ﬂﬁﬁwwmm of this paper, I will assume that my goal is to accurately monmowm.r
in as much detail as possible, economic activity in the state of KSRSB Asz.. I ¢.E=
also assume that my clients, whom [ take to be the general E&.__n. an—.:mn.n_ muitivariate
forecasts (whether or not these are more accurate than multiple univariate forecasts)
that incorporate the linkages among Minnesota variables and v.omémg Minnesota and
national variables. However, my clients are content with ﬁnooma_zos& ».oﬂmom.ﬁm. mzof.
ing me to defer the complexities and controversies of how to impose identifying restric-

tions on BVARs.
How Many Variables and Linkages Can I Include in the Model?

Ideally, my clients would like forecasts of almost every Minnesota economic variable,
Furthermore, they want each variable’s forecast to incorporate the effects of p.= the .om_sn
variables. In non-Bayesian modeling, this ideal cannot be met because of H.:mc.m.apmﬁ
degrees of freedom. Because there are many data series, the EE&& of mc:ﬂzﬂ& linkages
among them, and hence the potential number of model coefficients, is .Eﬁm.. But each
data series is fairly short, so that the number of observations per coefficient in an equa-
tion is small, possibly less than one. To conserve degrees of freedom, some <E..EEow are
left out of the model, and many potential linkages among the remaining variables are
turned off by assuming that the coefficients that represent them are zero. )

In BVAR modeling, concerns over degrees of freedom play a much _mmm important
role in deciding which variables and linkages among <.mnww_¢m to Em_ﬁ_o in the model.
Instead modelers must worry motre about the availability of computing power, support
staff, and their own time and energy in deciding whether to enlarge their models.

BVAR models can easily demand more memory than many computers m:n_ mcmima
packages allow. The prior information a BVAR modeler E.EE& to the estimation pro-
gram includes at least a variance-covariance (VCV) matrix for each equation. Since
BVARs typically include several lags of many variables in m»o__. equation, the .:E.E.unu
of coefficients, k, in a given equation can be large by non-Bayesian standards. Since the
VCV matrices, in turn, are k x k, the memory required to store them may mxno..& the
limits of many computer systems (microcomputers, for example}, or of mo*.?.,.ma oriented
to non-Bayesian methods. For example, although the RATS software available on the
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mainframe at the Federal Reserve Bank of Minnespolis is designed for BVARs and ac-
commodates a fairly generous number of coefficients per equation —about 200— this
limit is binding at times and has dictated a block recursive structure for some of the
models in use there. On a personal computer, RATS can handle about 50 coefficients
per equation. For a quarterly model with 6 lags of each variable in each equation, this
imposes a limit of about 9 variables. :

BVARs can also put large demands on support staff and on the modeler’s time and
energy. Whenever a large model is specified, someone has to assembie and maintain the
database. This takes a lot of time, or money, or both, In addition, estimating a BVAR
requires some programming and generates a lot of output that needs to be analyzed. My
impression is that, variable for variable, BVARs are probably much easier to estimate
and maintain than many econometric alternatives. Nonetheless, they do require support,
and in practice limits on these resources may also constrain the size of BYARs.

Degrees of freedom do play 2 role in choosing variables for a BVAR. Although
they ease the degrees of freedom problem, the prior beliefs imposed on the coefficients
of BVAR models express a degree of uncertainty about the value of the coefficient. The
more data are available, the more this uncertainty can be reduced. In cases where the
prior uncertainty is large and the data series are short, some variables may have to be
dropped from 2 BVAR to conserve degrees of freedom. I have estimated 6-variable, 6-
lag BVARs with as little as 10 years of monthly economic data, but where longer data
series can be substituted I normally exclude business cycle variables with less than 15 or
20 years of available data.:

For my Minnesota model, let me begin with a generous “wish list” of variables of
interest: gross state product, nonfamm employment, nonfarm earned income, farm in-
corne, an index of farm prices, farm Jand values, nonearned income, the unemployment
rate, retail sales, the Minneapolis-St. Paul CPI, and possibly some further disaggregations
of these series. I'll tentatively assume that the model will have the simple BVAR form,
with n lags of each variable in each equation (nt to be determined later).

How Shall I Transform the Data?

The BVAR framework does not have strong implications for whether data series
should be modeled as seasonally adjusted or not, logged or not, deflated or real, etc.
Nonetheless, some conventions appear to have been followed in the majority of BVAR
applications. In addition, the BVAR framework itself allows certain new ways of dealing
with these issues, especially seasonality.

Seasonal adjustment. Most BVARs to date have been estimated with seasonally
adjusted data. I suspect that this is because most BVAR applications so far have been
for general-purpose macro or regional forecasting, where success consists of beating your
competitors’ forecasts of the seasonally adjusted versions of variables like GNP, CPL,
and unemployment. To keep things simpler, | will assume that my clients also want me
to forecast the seasonally adjusted versions of my Minnesota variables.

As BVARSs spread to other applications —such as predicting government revenues or
corporate cash flows— forecasts of the nonseasonally adjusted versions of variables will
be more relevant. The question then arises: Is it more accurate to directly model the
unzdjusted series, or should I first adjust, then model, then unadjust? Some research now
underway touches on that question, but I don’t think there’s an answer yet, BVARs do
open up one interesting possibility, which is to model the unadjusted data directly and
introduce seasonal patterns into the prior beliefs about the coefficients {Canova, 1987;
Ballabriga, 1987).
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Logging. The general practice in BVAR models has been to log most éamzmm. except
those in ratio form or those taking on negative values. Many economic data series In.uZm.
and Minnesota nonfarm employment, for example— seem to grow :om%. mxmo%m:mz.w
with proportional disturbances. Logging them is convenjent because it allows H.r.n_u
behavior to be better approximated by a linear model with constant-variance E.E.::.o
disturbances. Even series that show little evidente of exponential mnosﬁ.ﬂ or porportional
disturbances may be logged, if their effects on other variables are cmrm,_.& to be more
nearly multiplicative than additive. In U.S. models the exchange rate is often Hom.mau
partly for these reasons, and in my Minnesota model I would log the index of ag prices
for this reason. . . .

Some series are usually not logged, however. Series in ratio or Ecvo:_os.,.m form
~such as interest rates or unemployment rates~ are usually not _ommm.a. Their ratio ».,.....nﬂ
already captures some multiplicative effects, and their U.S. a.Eo series may mrﬁws. little
evidence of exponential growth®. For these reasons, I will not log the Minnesota
unemployment data. Series that have negative values cannot, of course, be logged. For
this reason, 1 will work with levels rather than logs of Minnesota net farm income.

Deflating, With regard to deflating nominal variables, BVAR modelers SmB.ﬂo foliow
the convention of convention. That is, if the users of the forecast are primarily interested
in the deflated version of z variable, then that form is directly incorporated in the model
(rather than being computed from the forecasts of the boB_.na.ﬁn%: and w.n_ommn:.uc.
Thus GNP is generally modeled in real terms (despite the oommu_oam_ interest in =o=:.ﬂ.z._
GNP). I the nominal version is of more direct interest —as is often true of stock price
indices of the money supply— it is included in the model.

Sometimes this rule of thumb is not workable. For example, [ don’t know &Ezﬁn
the users of my Minnesota forecasts are more interested in real or :o_‘ahﬁ mn:E wm.mnm.
Also, my previous experience with this series has indicated that modeling it in nominal
for may lead to implicit forecasts of real growth that seem unreasonable, Therefore, I
would deflate retail sales.

Detrending. Although many data series, even those that rﬂ.a been logged, seem
to grow over time, BVAR modelers rarely detrend their data series, Trend mwmomz are
allowed to enter into the estimated coefficients of the many distributed lags in the
model. Frequently this results in explosive roots in the estimated model,

Are Appropriate Data Series Available?

At this point, I know which variables I want in my model, and in which forms. Now
1 have to see if the necessary raw data series are available or can be created.

. Some series are just not available at all. They must be dropped or Hmu_mnmn by
proxies. In my case, gross state product figures for-Minnesota are not available now.
extent, they can be proxied by employment and income. ) .

b mom”_v__ﬂn raw mnanw are EB%»E? but not frequently enough. The available series on my
wish list are reported at a variety of intervals —monthty, n:»nm.n_v: and E,_HE&._%. | nQ.h_n
put them on a common basis with an annual model, but my n_.ﬁaw aren’t satisfied with
this option. An alternative is use interpolation procedures to estimate quarterly values for
series, such as farm land values, that are available only annually. The model 8.;5 a..m:
be standardized on a quarterly calendar, My clients approve, and I proceed on ﬂr_m.gm_m .
To interpolate quarterly land values, I need to find a set of quarterly data series that
provide information about the likely intrayear movements in land values. I can use some
of the series I have already chosen, such as farm prices and incomes. | may also wish to
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gather some additional series —such as farm mortgage interest rates— just for this
purpose®,

Some raw series are too short or inconsistent. My Minnesota employment figures
go back, in one form or another, to 1939, but income data being in 1958, retail sales
data in 1964, and unemployment data in 1970. I will pick 1958 as my starting date.
I throw away the earlier data or employment (except that Fve already used it to sea-
sonally adjust) and estimate regression equations for retail sales {using post-1964 data)
and unemployment (using post-1970 data} that aliow me to backcast them to 1958. In
these regressions, as in my interpolations, I may use a combination of variables in the
model and variables gathered solely for this purpose. Similar techniques can be used to
splice a more recent to a less recent version of a data series that is not available in a
statistically consistent form for the whole data period. Mendesh (1987) describes one
not entirely successful application of this approach to M1 data in the United States.

Finally, some series are released with an unusually long delay. If this delay is not
too much longer than for the other variables in the model, the data may still be useful.
This is the case for the quarterly data on Minnesota earned income, which are releaged
about four months after the end of the quarter they cover. Most of my other series are
available by one month after a quarter, but the one-quarter lag of the income data does
not prevent them from contributing to my forecasts of the other variables. This will
probabiy not be true of the new data series on state gross product that may be released
soon. As I understand it, these series will be annual and availabie about 13-15 months
after the fact. Even if I could get a good historical gross state product series and interpo-
late it to a quarterly level, the delayed release of this series would probably make it
useless in my forecasting model.

How Should Related Series Be Handled?

Recall that related series, though not of direct interest themselves, may belong in
the model because they affect the forecasts of the variables of interest. The usual BVAR
methodology requires that forecasting equations for these related series appear some-
where in the model, so that the model is self-contained in the sense that it can produce
forecasts autonomously. However, the modeler has wide latitude in choosing exactly
how to model the related series.

The essential feature of a related series is that it contributes to the forecasts of the
variables of interest, either by making them more accurate or by allowing modelers to
claim that the forecasts incorporate all information their clients beljeve is relevant. Note
that to improve the forecasts of the variables of interest, the related series could be either
causally related or merely correlated with the variables of interest. In my Minnesota
model, for example, national cutput, income, and employment variables can be viewed
as shifting the demand for Minnesota products, thereby causing changes in Minnesota’s
employment and income. The role of stock market indices, such as the S&P 500, is less
clear. They seem to contribute significantly to making both U.S. and Minnesota growth
forecasts more accurate, but economists disagree over whether this is because they cause
or merely prefigure changes in the real sector. A sharper example was related to me by
Thomas Cargill, who found that state gambling revenues in Nevada could be used to
improve forecasts of GNP. Probably no one thinks that Nevada gambling revenues cause
big changes in GNP, but it is easy to believe that they might be correlated with —and thus
serve as a proxy for— some unmeasured dimension of consumer confidence.

For my Minnesota model, I will choose my related series from a list of important
national economic variables, These include the national counterparts of all my Min-
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nesota variables of interest, plus GNP and selected GNP components, the interest rate
on 3 month T-Bills, the money supply, the exchange rate, the S&P 500 index of stock
prices, and an index of commodity prices. . )

The usual BVAR estimation method requires that forecasting equations for the
related series be included in the model. The method relies on computing realistic simula-
tions of the out-ofsample forecasting performance of the model. .E.Er for axwa.m._n,
means estimating the model through the first quarter of 1964, moﬂooua:.m the next eight
quarters, computing the resulting eight forecast errors, and then repeating the process
for each successive quarter. If the modeler tries to avoid modeling the related series by

simply plugging in someone else’s forecasts of these variables, it will probably be impos-

sible to find out what that other forecaster forecasted, or would have forecasted, as .0m
the first quarter of 1964, As a result, it will be impossible to compute realistic ﬂmzﬂ_om
on the model’s out-of-sample forecasting performance. Statistics computed by using the
actual rather than forecasted values of the related series —in effect, under the assump-
tion of perfect foresight of the related series --will generally be too optimistic. This can
lead to the estimation of a model which is suboptimal in computing current forecasts,
when perfect foresight of the related series is impossible. . .

Some important BVAR applications also require that the related wmnom.cm Em.:%a
in the model. For example, BVAR forecasters frequently use mﬁo&_mﬂ_n.m .,Euz_w:o_m to
compute confidence bands around forecasts or probabilities of events like a recession.
Such probability assessments cannot be accurately computed without a stochastic model
for the related series.

Althought the related series need to be included in the model, they do not rB&.S
be modeled in the BVAR style. The modeler is free to make liberal use om. mxo_cw.o.:
restrictions in the equations for the related variables, since by definition the n:oanm.n_c: t
care whether the forecasts of the related series incorporate feedback from other ézm.Emm.
At one extreme, then, the modeler may choose to moedel each related series as a univari-
ate autoregression. At the other extreme, the modeler may simpiy enlarge Eo BVAR
and treat the related serjes as though they were variables of interest. Each equation imEE
contain n lags of the variables of interest and of the related variables. .mé: committed
BVAR modelers may stop short of this extreme, however, especially if it generates more
coefficients than can be estimated with the modeler’s computer package. An intermediate
possibility is to follow a block recursive pattern: one BVAR with equations for the relat-
ed variables only, with no variables of interest on the right-hand side, and a second w.<>w
with equations for the variables of interest, with some or all of the related variables
on the right-hand side. A variety of other forms is also possible, ms.u the out-of-sample
forecasting statistics used in estimating the model can guide the selection of a m_..w._ model.
I will use these statistics in deciding whether to estimate a single BVAR for the ZEﬁmmcﬁu
and U.S. series or to adopt a block recursive structure by excluding Minnesota variables
from the U.S. variable’s equations.

Is the Mode] Manageable?

I have now drawn up a fairly long wish list of variables of interest and related series,
It's time to check whether my staff, my computer, and I can handle so big a model. .

My computing resources are probably adequate. They allow about 200 nommmo_aiw
per equation. Since I am working with quarterly data, I can probably get by with 4 lags
of each variable. (I recommend at least enough lags to cover half a year, and preferably
a year’s worth or more.) This means I can put about 50 variables in the E.oa& »:..,_. still
not have to exclude any variable from any equation. If I want to experiment with 8
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lags —which might be a good idea— I will have to cut down to about 25 variables. Even
that is not very restrictive.

In this case my human resources are binding, however. I have only a limited amount
of time to devote to building the model, In addition, I am not clever enough to clearly
and concisely present a large model as an illustration of the BVAR technique. As a result,
I will prune my model way back. My only variable of interest will be Minnesota nonfarm
employment. My related series will be the S&P 500 index, the interest rate on 3-month
T-bills, and GNP. All will be modeled as quarterly averages, with data since 1958. Only
GNP will be deflated, GNP and Minnesota employment will be seasonally adjusted, but
the other two series are already virtually nonseasonal in their raw form. All except
interest rates will be logged.

Section 2: Estimating 2 BVAR

As its name suggests, the Bayesian vector autoregression procedure is motivated by
Bayesian statistical theory. However, BVAR methods do not tigorously follow Bayesian
guidelines. They can instead be interpreted as approximations to exact Bayesian methods.

Without Bayesiandike restrictions, my proposed Minnesota model would probably
be subject to degrees of freedom problems, leading to what is known as overfitting of
the coefficients. With four lags of each of my four variables in each of my four equations,
plus a constant term, I would have an unrestricted VAR (UVAR) system with 68 coef-
ficients, or 17 per equation. Because the right-hand-side variables are the same for each
equation, the theory of seemingly unrelated regression (SURE) implies that [ can
oplimaily estimate my entire UVAR by applying OLS 1o each equation separately, 1 have
119 quarters of data for each equation, or 7 for each of the 17 coefficients in the equa-
tion. Those 17 coefficients are probably more than enough to fit quite well the in-sample
data on Minnesota employment. In fact, the fitted coefficients may fit the data too weli,
in the sense that meaningless accidental patterns in the historical time series may strongly
influence the estimated coefficients (see Todd (1984) for a nontechnical discussion of
this idea). This is called overfitting.

A comparison of simulated out-of-sample forecasts of this UVAR and a set of four
4-lag univariate autoregression suggests that overfitting is at least a mild problem in the
UVAR (see Table 1). One step ahead, its forecasts for all variables are less accurate than
those of the system of vnivariate equations. For the national variables, this remains true
at longer horizons, and the IVAR GNP forecasts are clearly inferior. For Minnesota em-
ployment, however, the two models’ forecasts are nearly equally accurate, and the
UVAR dees better at long horizons. This reinforces the notion that national variables
are important for Minnesota forecasts.

in larger UVAR models, where the number of coefficients grows rapidly, overfitting
is more of a problem. The number of coefficients may even exceed the number of ob.
servations. T

The BVAR method is designed to offset overfitting by imposing Bayesian prior
restrictions on the coefficients. In effect, the information that OLS extracts from the
data is supplemented by the modeler’s beliefs about the likely values of the coefficients,
For practical reasons, these prior beliefs have so far been imposed by methods that only
approximate true Bayesian procedures.

One reason that BVAR methods are only approximately Bayesian is that the coef-
ficients of BVARs are generally estimated with equation-by-equation estimators rather
than system estimators. Although optimal for BVARs, single-equation methods are sub-
optimal for BVARs unless the prior variance-covariance matrices of the coefficients are
identical for each equation (up to a scale factor). It is unlikely that a modeler’s prior
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TABLE la

FORECASTING PERFORMANCE OF A SYSTEM

OF 4-LAG UNIVARIATE EQUATIONS

29

Mean Root Mean Numbers
Quarters Mean Absolute Squared of )
Ahead Error Error Error Theil U Observations
Forecast Statistics for Stock Prices
1 0.44129199E-02 0.42502138E-01  0.56529307E-01  0.91949525 94
2 0.90060410E-02 0.76055179E01  0.97561945E-01  0.95152243 93
4 0.16141438E01  0.12081456 0.15058548 0.96612738 91
8 0.24718777E-01  0.16682311 0.21227678 0.97025187 87
12 0.28204854E-01  0.18362790 0.23081953 0.92956019 83
Forecast Statistics for T-Bill Interest Rates
1 —0.10744089E-01  0.636635907 0.99507047 0.97783979 94
2 —0.28423123E-01 1.1173874 1.5945973 1.0338853 93
4 - 70139866E-01  1.5833610 2.0769228 1.0178494 91
3 -0.12470743 2.5288659 3.0916833 1.0372513 87
12 —-0.14503393 2.9584100 3.6232216 1.0444660 83
Forecast Statistics for GNP
1 0.17570410E-03  0.77680328E-02  0.98777363E-02  0.79686875 94
2 0.39077426E-03  0.12310705E-01  0.15663106E-01  0.72366887 93
4 0.80596419E-03  0.20828869E-01  (.26260504E-01  0.67236302 91
8 0.71383881E-03  0.34583572E-01  0.40548729E-01  0.58997202 87
12 —0.92070822E03 0.40445501E-01  0.46587041E-01  0.49970576 83
Forecast Statistics for Minnesota Employment
1 0.10791717E-02  0.53575996E-02 0.64582705E-02 0.62954228 94
2 0.24459644E-02  (.10848400E-01 0.13116183E-01 0.66134598 93
4 0.52632735E-02  ©0.21999314E-01  0.25701500E-01  0.67459082 91
[ 0.10109570E-01  0.38996145E-01  0.44899233E-01  0.64370795 87
12 0.14222564E-01  0.45364438E-01 0.55285882E-01 0.57681050 83

Current value of the system likelihood is $92.06.
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TABLE 1b
FORECASTING PERFORMANCE OF A
4-LAG UNRESTRICTED VAR
Mean Root Mean Numbers
Quarters Mean Absolute Squared of
Ahead Error Emmor Error Theil U Observations
Forecast Statistics for Stock Prices
1 0.64694356E-02  0.56751922E-01  0.69585327E-01  1.1318620 94
2 0.17736743E-01  (.10303019 0.12422263 1.2115443 93
4 0.31752133E-01  0.15047637 0.18640531 1.1959405 92
8 0.64125931E-01  0.20885106 0.27720111 1.2669414 87
12 0.65056825E-01  0.27150705 0.38216381 1.5390564 83
Forecast Statistics for T-Bill Interest Rates
1 —0.70387902E-01  0.72140918 1.0716148 1.0530586 94
2 -0.13341794 1.2586961 1.7903711 1.1608187 93
4 —0.14276755 1.5966581 2.2257944 1.0908077 91
8 —0.85740554E-01  2.3709643 3.1562491 1.0589130 87
12 0.53176012E-01  2.5657213 3.3852398 0.97586300 83
Forecast Statistics for GNP
1 0.81345505E-03  0.92385880E-02  0.12096472E-01  0.97586126 94
2 0.15835237E-02  0.14849571E-01  0.19575944E-01  0.90445033 93
4 0.41698089E-02  0.27198716E-01  (.35305520E-01  0.90394735 91
8 0.10053677E-01  0.51197739E-01  0.71922229E01  1.0464472 87
12 0.99343588E02  0.82881626E-01  0.13764736 1.4764445 83
Forecast Statistics for Minnesota Employment
1 0.14234481E-03  0.52966308E-02  0.66608800E-02  0.64929233 94
2 0.41956464E-03  0.9458B151E02 0.11549874E01  0.58236933 93
4 0.13690653E-02  0.18894005E-01  (0.23195708E-01  (0.60882095 91
8 0.34885120E02 0.41518127E-01 0.55188549E-01 0.79122304 87
12 0.12864247E-02  0.70509216E-01  0.11052038 1.1530849 83

Current value of the system likelihood is —555.93.
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beliefs would satisfy this condition exactly, so the typical BVAR single-equation es-
timation procedure is inefficient.

Full system estimation of a BVAR, though efficient, is computationally demanding.
In my Minnesota model, it would involve the 68 x 68 variance-covarisnce matrix of all
the coefficients, instead of the four 17 x 17 variance-covariance matrices of the separate
equations. Some efforts are being made to find efficient algorithms for system estima-
tion of BVARs, but I am not aware of any successful applications yet®.

For each BVAR equation, the prior information takes the for of a “known” variance
of the disturbance term and a normal distribution for the coefficients.

Although treated as known, the disturbance term variances in the prior are usually

computed fron the data. [Alternatively, Doan, Litterman, and Sims (1984) propose '

treating this variance as an additional hyperparameter.] For each BVAR variable, Doan,
Litterman, and Sims (1984) suggest setting the standard deviation of its disturbance term
to 0.9 times the standard error of the residuals in a regression of the variable on six lags
of itseif. The factor 0.9 allows for a 10-percent reduction in the standard deviation when
other variables are added to the equation. All of these standard deviations are also used
in scaling the prior covariance matrix of the coefficients of each equation. Therefore a
standard deviation must be computed even for related series that are not modeled with
BVAR eqguations.

The mean of the normal distribution of each equation’s coefficients is typically set
according to the so-called random walk (or random walk with drift) prior. The intuition
behind this prior is that most economic series are reasonably well approximated by a
random walk around a trend.

To help capture the trend, a constant is included in each equation. For logged va-
riables, the constant can pick up the trend growth rate. (As it happens, the variables that
typically have not been logged also typically exhibit little trend.) Usually, the prior
means of all the constant terms are zero. Their prior variances are usually scaled by a
hyperparameter dedicated to this purpose. Alternativelly, their variances can be set at a
large multiple (100,000 for example) of the disturbance term variance. This expresses
priot ignorance about the constant term and lets the data determine its value.

To represent a discrete-time random walk, the prior mean of the coefficient on the
first lag of the dependent variable is set to 1.0. All other coefficients are given a prior
mean of 0.0, )

It may be more plausible that a variable behaves like a random walk in continuous,
not discrete, time. In this case the implications of the random walk prior for the BVAR
coefficients are somewhat different. BVARSs are generally fit to time-averaged discrete
data series. If the underlying continuous time version of the variable follows a random
walk, the time-averaged version will show 2 more complicated pattern of lag coefficients.
[See Christiano and Eichenbaum (1987), pp. 75-77, and Working (1960).] The coef-
ficient of the jth lag of the dependent varizble will have a nonzero mean given by
(1-a)ad~1, where o =+/3—2. The prior means of the other coefficients in the equation
remain zero, however,

Specifying the prior variance-covariance matrices for the coefficients of each equa-
tion is the heart of the BVAR method and the core of a typical BVAR computer pro-
gram, Usually the prior VCVs are chosen from a standard family of VCVs. This family,
which is indexed by about ten so-called hyperparameters, has gradually emerged from the
wotk of Sims, Litterman, and Doan. Each setting of the hyperparameters identifies a
particular VCV in this family and thus completes the specification of the prior normal
distribution of the coefficients. Viewed another way, the prior VCV can be writtenasa
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function of the hyperparameters (and of the disturbance term variances). Doan, Litter-
man, and Sims (DLS) have thus considerably simplified the task of specifying prior
VCVs, reducing the number of decisions from hundreds or thousands to about ten.

The DLS family of VCVs is based on two simple beliefs about the coefficients of a
multivariate time series forecasting model. One is the belief that, in forecasting a given
variable, its own past values are likely to be more useful than the past values of other
variables. The other is that, for both the forecasted variable and the other variables used
to forecast it, more recent values are likely to be more useful than more distantly lagged
values. In other words, our confidence that a coefficient is nearly zero increases if the
coefficient applies to a more distant lag or to a variable other than the dependent variable,
as indicated in Figure 1.

These two simple beliefs are expressed by means of two or three hyperparameters.
One, which I will call DAMP, controls the rate at which the prior variances shrink toward
zero as lag length increases. This is generally done by making the prior variances of
coefficients on jtb lags proportional to either -DPAMP or DAMP(-1). Aithough the most
prominent BVAR software package (RATS, by VAR Econometrics) has a built-in facility
for varying DAMP (which it refers to as the lag decay parameter), in many applications
the formula j-1 is used,

Two other basic hyperparameters govern the relative prior variances of coefficients
of own lags (lags of the dependent variable) versus coefficients of cross lags (lags of other
variables). Own-lag variances are all scaled by the hyperparameter DLS call r, , and cross-
lag variances are all scaled by the hyperparameter they call . m and 7, can strongly
affect the forecasting performance of a BVAR.

Over the years, the DLS family of VCVs has been refined by the addition of more
hyperparameters. The prior variances of the constant terms, for example, are scales by a
hypetparameter they call w;. Other hyperparameters influence the time variation of the
coefficients (14, #3), the sum of the coefficients (w,), and relative variances among the
cross variables (7, ).

Although DLS have taken us a long way toward specifying a prior VCV for our
coefficients, it is usually the case that even experienced BVAR modelers cannot pick a
setting of the hyperparameter that adequately represents their beliefs. In fact, most of
the easily agreed to characteristics of a prior VCV are common to all members of the
DLS family, and DLS focus attention on the hyperparameters partly because they index
the remaining uncertainty about the nature of the prior. In Bayesian terms, the prior
distribution of the coefficients is a mixture of normal distributions, and the hyperpara-
meters index the family of normal distributions in the mixture, (More correctly, the dis-
tribution of the coefficients is a mixture of conditional normal distributions, each con-
ditional on the assumed variance of the equation disturbance term.) A Bayesian could
proceed by expressing a fairly flat prior distribution over the hyperparameters, computing
the implied mixture of coefficient distributions, and using that mixture to specify the
prior VCV of the coefficients.

This fully Bayesian approach has never, as far as I know, been implemented. Instead
DLS have suggested a procedure for using the historical datz to select a particular set of
hyperparameters (and thus also a particular VCV for each equation). This procedure
appears to be contradictory. A prior is the distribution the modeler believes before
examining the data, so how can the data be used to pick the prior? Strictly speaking,
they cannot. However, under certain conditions, this data-based method for selecting a
prior is justified as an approximation to the Bayesian mixture-of-distributions procedure
outlined above (see the Appendix).

Coefficients on
Other Variables

Coefficients on
Dependent Variable

0.0

FIGURE 1
A SCHEMATIC REPRESENTATION OF THE MEANS AND VARIANCES OF THE
COEFFICIENTS IN THE DISCRETE-TIME RANDOM WALK PRIOR DISTRIBUTION
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Lag 2
Lag 3
Lag 12

;
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The key ingredient in the DLS procedure for selecting a set of hyperparameters is
realistic simulation of the modei’s out-of-sample forescasting performance. A set of
hyperparameters is chosen. Then the model is estimated, using Kalman filter techniques
to incorporate the prior associated with those hyperparameters, through a startup date.
A forecast is made from that date and compared to the actual data to compute its forecast
errors. The Kalman filter is applied again to update the estimates of the coefficients with
data through date startup pius one, and the forecasts and forecast errors for that date
are computed. This continues until the end of the historical data is reached. The whole
procedure is then repeated for many other settings of the hyperparameters, so that each
hyperparameter setting has a simulated forecasting track record. The setting with the
best track record wins. That is, its prior is singled out and used to estimate the final
forecasting model.

A critical aspect of this procedure, obviously, is deciding which forecasting track
record is best. Several criteria, or metrics, have been proposed and used, including
minimization of the log determinant of the VCV of the simulated one-step-ahead forecast
errors and minimization of weighted averages of root-mean-squared forecast errors one
or more steps ahead. The choice of a criterion is to some extent problem-specific and
couid be based on the modeler’s forecast error loss function. In my Minnesota model,
for example, I could focus on my variable of interest, using as my criterion the root-
mean-squared error of one-step-ahead forecasts of Minnesota nonfarm employment.

However, the criterion that is most consistent with the notion that BVAR methods
are approximately Bayesian is maximization of the quasilikelihood statistic proposed
by Doan, Litterman, and Sims (1984). For any given equation, maximizing this statistic
is equivalent (under certajn assumptions) to minimizing a weighted sum of the out-of-
sample one-step-ahead forecast errors, with weights that are inversely proportional to
the conditional forecast error variances. An equation’s forecasting performance thus
depends both on its model’s accuracy and on its model’s ability to detect when forecasts
are subject to abnormal uncertainty. An analogous statistic could be computed for the
model as a whole if efficient system Kalman filtering algorithms were available. Since
these algorithms are not widely available yet, 2 model’s forecasting performance (that is,
its performance under a given sect of hyperparameters) is usually ranked by summing the
quasilikelihoods of its individual equations. This is the criterion I will use to select hyper-
parameters for my Minnesota model.

The remaining task —searching for a set of hyperparameters that optimize the ctiterion
—is computationally intensive, Even if the final model selected will be smali encugh
to estimate and use on a microcomputer, it is helful to use a mainframe at this stage.
This is especiaily true if the number of hyperparameters is large, say 5 or more.

The computational burden of hyperparameter search depends on two factors, the
number of hyperparameters to be picked and the computational complexity of comput-
ing out-of-sample forecasts for a given set of hyperparameters. The latter factor depends
primarily on the number of coefficients per equation and the length of the historical
period over which out-of-sample forecasts will be computed. The former factor de-
termines the dimension of the space to be searched. This is important because in can rule
out a nearly surefire method of optimizing the criterion —checking all hyperparameter
settings on a fine grid that encompasses all reasonable values. For example, five hyper-
parameters and 5 grid points for each implies a grid with 5%, or 3125, settings of the
hyperparameters. Except for small models with short out-cf-sample forecasting periods,
checking all of those hyperparameter setting would require hours —possibly days— of
mainframe CPU time. Similarly, computational burdens also limit the possibilities of
computing the numerical derivatives needed for hill-climbing algorithms.
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With grid search and hill climbing effectively ruled out, the most common alternative
is a procedure sometimes referred to as axial search. The modeler takes an initial guess
at the optimal setting of the hyperparameters. Then a grid of settings of the first hyper-
parameter is searched, holding the remaining hyperparameters fixed. The best point in
this grid used to pick the optimal value of the first hyperparameter. The procedure is
repeated for each hyperparameter in succession, always with the other hyperparameters
held constant. A grid of 5 points for each of 5 hyperparameters thus implies 25 points
under axial search, rather than 3125 under a multidimensional grid search. And if the
criterion is a fairly smooth, symmetfical (when bisected by lines parallel to the axes)
function of the hyperparameters, axial search will get close to the optimal setting of the
hyperparameters. (See Figure 2a.)

In general, however, axial search can go astray, as illustrated in Figure 2b. As the
figure suggests, it may be vaiuable to do several axial searches, varying the order in which
the hyperparameters are searched. Table 2 shows the differences between 2 axial searches
over 10 hyperparameters for the 4-lag version of my Minnesota model. The first search,
leading to Model 1, ends with fairly typical optimal hyperparameter values (althought
the hyperparameter on the variance of the constant term is somewhat low). The search
leading to Model 3, over a different ordering of the hyperparameters, leads to a lower
likelihood and somewhat unusual degrees of time variation, decay of coefficients, and
tightness on sums of coefficients’.

Tables 3a--3c show three BVAR models that achieve better performance statistics
for Minnesota employment than the univariate and unrestricted VAR systems, at least
one year ahead. Results for the national variables are less clear. One step ahead, the
BVAR models generally forecasted more accurately than the univariate and unrestricted
VAR models. At longer horizons, however, BVAR Model 1 (4 lags, first axial search
order) is dominated by the univariate model and, for TBILL, by the unrestricted VAR.
Model 2 (8 lags), which had the highest likelihood, fared better. It almost uniformly
forecasted better than the univariate and unrestricted BVAR models. (I also estimated
8-lag univariate and unrestricted VAR models. The former performed about the same
as its 4-lag counterpart. The latter performed much worse than any model shown here.)
Based on its higher likelihcod and overall forecasting performance, Model 2 is my choice
as the best forecasting model. However, the forecasting performance of Model 3 (4
lags, second axial search order) was generally nearly as good and was better for Min-
nesota employment.

The optimal hyperparameter settings from the axial search reported in Table 2 were
used to estimate the Minnesota BVAR models 1 and 2. I am now ready to use them,
especially modei 2, for forecasting my variable of interest. Table 4 shows the results,
under two assumptions. With data only through the third quarter of 1987, both models
forecast strong GNP and Minnesota employment growth ahead. When preliminary
estimates of fourth quarter average stock prices and interest rates are added to the data
(to reflect October’s stock market crash), the models forecast an immediate but brief
downturn in GNP and a slowdown in Minnesota employment growth.

My mode] is up and running, and my discussion of implementing Bayesian vector
autoregressions would now have to turn to applications. Perhaps another day.
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TABLE 2

OPTIMAL HYPERPARAMETERS AND LIKELIHOOD FOR
3 SPECIFICATIONS AND SEARCHES

(DLS
notation)

OWN
(m)

CROSS TVAR SUM TITE WT CONST DECAY

(@)

() (s) (ms) (M) (Ta) (g)

BEGWT (%)

MNWT (*%)

Likelihood

* Orderings

First ozder
of search

Second order
of search

Results

First order
4 Iags
(Model 1)

First order
B lags
(Model 2)

Second order
4 lags
(Model 3)

0.01

0.04

0.05

0.01

0.01

0.01

0.000001 10.6 50 1.0 0.001 1.0
0.0001 10,0008 5.0 0.01 0.001 0.99%

0.0001 10,000.0‘ 5.0 0.01 1000 0.999

10

0.2

1.5

0.2

0.25

10.0

10.0

769.38

789.55

760.73

{*) Extends no-change forecast in prior to coefficient covariances,

(**) Larger values increasingly constrain Minnesota coefficients in U.S. equations to be near zero. A value of 10 implies very little feedback from Minne-

sota to U.5.
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i
TABLE 3a TABLE 3b !
FORECASTING PERFORMANCE OF FORECASTING PERFORMANCES OF
BVAR MODEL 1 BVAR MODEL 2
Mean Root Mean Numbers Mean Root Mean Numbers
Quarters Mean Absolute Squared of Quarters Mean Absolute Squared of )
Ahead Error Error Error Theil U Observations Ahead Error Ertor Error Theil U Observations .
Forecast Statistics for Stock Prices Forecast Statistics for Stock Prices
1 0.96457942E02  0.41427879E01  0.55086468E-01  0.89602629 94 1 0.22856762E-02  0.42061257E01  0.55767352E-01  0.90710142 94
2 0.22915027E-01  0.75341238E-01  0.94585965E-01  0.92249767 93 2 0.31050548E-02  0.75705907E-01  0.95092680E-01  0.92743967 23
4 0.49051095E-01  0.11945865 0.14578003 0.93529655 51 4 —0.45228548E-02  0.11010722 0.14087597 0.90383305 91
8 0.88026369E01  0.17331010 0.21617859 0.98803932 87 8 —0.36636097E-01  0.15387294 0.19664602 0.89876613 87
2 0.11542238 0.19562545 0.25357343 1.0211951 83 12 —0.75970975E01  0.17690725 0.22369056 0.90085028 83
Forecast Statistics for T-Bill Interest Rates Forecast Statistics for T-Bill Interest Rates _
A
1 ~0.66237272E-01  0.64885951 1.0024518 0.98509333 94 —0.15492653E02  {.63847701 0.96049839 0.94386636 94 m
2 —0.13288265 1.1374443 1.6338256 1.0593197 93 0.17478035E-01  1.1022750 1.5295039 0.99168087 93 : _
4 —0.18117597 15773181 2.0916440 1.0250639 91 0.12194619 1.4434553 1.9036699 0.93294236 9 m
8 -0.15550373 2.5676163 3.3218537 1.1144729 87 0.40882801 2.2568759 29055395 0.97480058 87 :
12 —0.76784764E-01  3.1334149 4.0116873 1.1564490 83 0.72548312 27045816 3.3794420 0.97419167 83
i
Forecast Statistics for GNP Forecast Statigtics for GNP n
¢
1 —0.64374095E-03  0.79779010E-02  0.98313782E02 0.79312890 94 1 0.11946314E-03  0.75846517E-02  0.96080025E-02  0.77510846 94 _
2 —0.12042653E-02  0.12271489E-01  0.15022276E-01 0.69406116 93 2 0.22709227E03  0.11573013E<01  0.14943110E-01° 0.69040351 93 :
4 —0.97842509E-03  (.22186438E-01  0.26025275E-01  0.66634032 91 4 0.50809497E-03  0.20209497E-01  0.25525459E-01  0.65334325 91
8 0.22722351E-02  0.39164592E-01  0.47713133E01 0.69421198 87 8 —0.12175093E02 0.33500818E-01  0.39440695E-01  0.57385045 87
12 0.67937170E02  0.60463561EG1  0.73629265E-01  0.78976829 83 12 —0.53656837E02 0.39503988E-01  0.45586761E-01  0.48897648 83 :
Forecast Statistics for Minnesota Employment Forecast Statistics for Minnesota Employment w
—0.49030206E-03  0.38385829E-02 0.47857412E02  0.46650669 94 1 0.17109189E02  0.43507330E02 (.53161864E-02 0.51821378 94 _
—0.11091415E-02  (0.74289833E-02 0.91212427E02 0.45991254 93 2 0.39960907E02  0.837830836E-01  0.1060G0508E-01  0.53450025 93 !
~0.17157645E02  0.15542168E-01  0.1868957SE-01  0.49054787 91 4 0.10024067E-01  0.19389729E01  0.22983272E-01  0.60324510 91 :
—0.42042340E03  0.356608B1E-01  0.40454940E-0F 0.57999134 87 8 0.23136702E-01  0.41841318E-01 0.48283716E-01  0.69223035 87
0.37508124E-02  0.51762176E-01  0.60092712E-01  0.62696127 83 12 0.35664753E-01  0.55455294E-01  0.64764457E-01  0.67570268 83
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TABLE 3¢
FORECASTING PERFORMANCE OF
BVAR MODEL 3
Mean Root Mean Numbers
Quarters Mean Absolute Squared of
Ahead Error Error Erroxr Theil U Observations
Forecast Statistics for Stock Prices
1 0.35541865E-02  0.43619641E01  0.55569037E-01  0.90387568 94
2 0.70145339E-02 0.78414110E01  0.95721289E-01 0.93357049 93
4 0.95860105E02  0.11990585 0.14613505 0.93757428 91
8 0.11074612E01  0.16263327 0.20623418 0.94253861 87
12 0.36510444E02  0.17841622 0,22663072 0.91269092 83
Forecast Statistics for T-Bill Interest Rates
1 -0.41453112E01  0.64017480 0.99358674 0.97638176 94
2 ~0.81996515E01  1.1394534 1.5930433 1.0328778 93
4 -0.11252442 1.5891316 20644306 1.6117273 91
8 ~0.55075583E-01 2.361768% 2.9809486 1.6001001 87
12 0.93502966E-01  2.5722453 3.2281564 0.93058057 83
Forecast Statistics for GNP
1 —0.60704319E01  0.77246191E-02 (.95961864E-02 0.77415521 94
2 —0.13451009E-02  0.11333701E01 (.14273644E-01 0.65947277 93
4 —0,25165850E-02  0.18371969E-01  0.23179269E-01  0.59347237 9%
8 —0.52181970E02  0.29454862E01 0.37036705E-01  0.53887311 87
12 —0.10336068E-01  0.39937586E-01 ~ 0.50844328E-01 0.54537063 83
Forecast Statistics for Minnesota Employment
1 0.54594528E-03  0.38864228E-02 0.48762372E-02 0.47532811 94
2 0.12777054E-02  0.76168731EH2 0.92663490E02 0.46722911 93
4 0.32155998E-02 0.15305952E-01 0.18582637E-01 (.48774104 921
8 0.70654911E-02 0.32061078E01  0.37841634E-01 0.54252509 87
12 0.10233763E-01  0.44356588E-01  0.53757773E01  0.56086738 83
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TABLE 4

FORECASTS OF GROWTH RATES FOR GNP AND MINNESOTA EMPLOYMENT

MINNESOTA NONFARM EMPLOYMENT

GNP

With Additional Data

With Additional Data

on Stock Prices and
7-Bill Rates for 87:4

87:3 only

With Data Through

on Stock Prices and

T-Bill Rates of 87:4

With Data Through
87:3 only

Model 2 Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Model 1

4.0

4.5

35

36

=20

-1.1

4.5

4.7

87:4

1.7

2.1

35

3.6

0.9

24

4.2

4.4

88:1

0.7

14

31

3.7

0.4

235

2.9

3.6

88:2

-0.1

1.7

2.2

335

L1

3.7

1.7

3.0

88:3

0.2

2.8

1.5

3.1

1.9

5.2

1.1

2.7

88:4

1.5

3.7

1.2

238

3.6

5.5

13

2.5

89:1

2.5

4.0

0.9

2.6

4.5

5.0

LS

2.4

89:2

4.1

0.9

24

4.4

4.3

1.8

23

89:3

31

4.0

1.0

2.3

3.8

2.2

23

89:4

41




42 REVISTA DE ANALISIS ECONOMICO, VOL. 3, N0 2

Notes

! This paper dees not focus on other topics related to BVARs, such as their conceptual motivation
[see Doan, Litterman, and Sims (1984) or Todd (1984}, their forecasting performance [see
Litterman (19862) and McNees (1986)], or their use in resolving questions concerning economic
structure ot policy [see Sims (1982, 1986a, 1987), Litterman (1985), Cooley and LeRoy (1985),
Runkle (1987), and the references cited therein].

2 This assumes that the unknown underlying structure of the economy will not change through
the forecasting period (or, in the case of a time-varying coefficients model, will continue to
evolve as it has in the past). This may not be a good assumption in the case of the 1987 stock
market crash, which may very wel induce new private sector strategies and public sector re-
gulations. In addition, the mere size of the crash itself may be inconsistent with the stochastic
structure of many models,

3 However, in countries where interest rates have taken on more extreme values than in the United
States, the log transformation may be more useful and has the advantage of capturing the mul-
tiplicative relationship between interest rates and asset values.

4 There is a long lterature on optimal interpolation of economic time series. One early BVAR
modeler, Robert Litterman, made extensive use of interpolated national income and product
account data to build a monthly model of the U.S. economy (Litterman, 1984). His interpolation
method (Litterman, 1983) generalizes the earlier methods of Chow and Lin (1971) and Fernan-
dez (1981},

5 Amirizadeh (1985) describes many examples in which series both inside and outside the model

are used to interpolate data from a quarterly to a monthly level.

Valentin Carril (1988} has experimented with system estimation procedures for a Chilean macro-

economic BVAR, His procedure is expensive and has so far not led to improved forecasts.

7 Sims (1986b) has recently proposed an alternative search procedure. First the criterion is evaluat-
¢d on a small grid (up to 50 points) of the hyperparameter space. Then Bayesian procedures
and some assumptions about the rate of change of the criterion function are used to interpolate
the value of the function for any other hyperparameter setting. These interpolations are not
computationally expensive, so a hill climbing routine can be used to find optimal hyperparameter
settings for the interpolated function,

Appendix:
A Bayesian Interpretation of Searching over Hyperparameters

The following is patterned after the discussion in Doan, Litterman, and Sims (1984).
I am responsible for any errors.

Suppose the data y are conditionaily distributed with density function p(y|), where
8 is a vector of coefficients, If we can then specify a prior density q(8) for these coef-
ficients, we can form the joint density p(v|6)q(8) of the data and coefficients, calculate
the likelihood function by plugging observed values of y into p, and apply Bayes’s Rule to
get a posterior pdf for #. This is the standasd Bayesian approach.

Suppose now, however, that our prior for @ can be written as a function of a smaller
set of parameters 7, so that q,(@|m) represents our prior pdf for #, conditional on the
vector w. Suppose further that we are unsure of our beliefs about #, holding the prior
pdf q, (). Then our prior pdf for 8 is actually a mixture of pdfs of the form g, (8|m,
where the mixture is formed by weighting q, (8in) by ¢, («) and integrating, or

q(®) = fq, (@1m)g, (r)dn.
We are free to formulate our prior for @ in this way and then proceed as above.

Alternatively, suppose we leave q, unspecified and regard y and 8 as conditionally
(on 7) jointly distributed as p(y|@)q, (8|m). If we integrate 8 out, we obtain m(y|r), the
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marginal distribution for y conditional on #, For a fixed data vector y, m(y|r) plays the
role of a likelihood function for n. And, if we know our prior distribution for 7 is re-
latively flat in the region where m(yir) is large, we can say, even without specifying
anything more about our prior for m, that our posterior for 7 is roughly proportional to
the “likelihood” m(y|r). Our posterior for #, in turn, is a weighted average of those
obtained (by the usual Bayesian methods) conditional on values of m, with weights
given by the posterior on # and hence also roughly proportional to m(y|r).

This process of weighting the conditional posterior for 8 by m(y|m) has never, to my
knowledge, been used by a BVAR modeler. Instead, the value r* that maximizes m(yls)
has been found (at least approximately), and the posterior value 0¥ for § conditional
on 7* has been computed and used as the fitted coefficient vector. On the surface, this
is a procedure for using the data to select a prior and is thus not a Bayesian procedure.
However, if the likelihood for o, m(ylm), is large only within some region P (and falls
off rapidly elsewhere), and if the posterior for @ condicional on & is not very sensitive
to varjations of @ within P, then the difference between 8* and the true posterior value
of 8 formed by weighting conditional posteriors for 8 by m(y(n) is small. In this sense,
picking 7* and computing 0* can approximate the true Bayesian flat-m-prior estimate
of 8. At least in some wellknown examples of BVAR models [Doan, Litterman, and
Sims (1984)], the conditions for approximate optimality of 8* appear to be met. Estimat-
ing BVARs by picking optimal hyperparameter in this way to some extent implies a belief
that these conditions are not too seriously violated.
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Abstract:

Doan, Litterman, and Sims have described a method for estimating Bayesian
vector autoregressive (BVAR) forecasting models. The method has been
successfully applied to the U.S. macroeconomic dataset, which is relatively
long and stable. Despite the brevity and volatility of the post-1976 Chilean
mucroeconomic dataset, this paper shows that a straightforward application
of the DLS method to this dataset, with simple modification to allow for
delays in the release of data, also appears to satisfyv at least one criterion
of relative forecasting accuracy suggested by Doan, Litterman, and Sims.
However, the forecast errors of the Chilean BVARs are stil large in absolute
terms. Also, the model’s coefficients change sharply in periods marked by
policy shifts, such as the floating of the peso in 1982,

Introduction

The task of forecasting of main Chilean macro variables has been a hard one after
decades of significant structural changes and policy shifts. However, no clear undes-
standing on the way these changes affect forecasting modeling can be achieved without
laying out the basic of a forecasting structure.

*  Comments and encouragement from Christopher Sims, Felipe Montt and Valentin Carrif were
quite helpful. The authors, naturally, take responsability for the paper’s errors and shortcomings,
The views expressed herein are those of the authors and not necessarily those of the Federal
Reserve Bank of Minneapolis, the Federal Reserve System, or any other organization.
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