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Abstract:

Doan, Litterman, and Sims have described a method for estimating Bayesian
vector autoregressive {BVAR) forecasting models. The method has been
successfully applied to the U.S. macroeconomic dataset, which is relatively
long and stable. Despite the brevity and volatility of the post-1976 Chilean
macroeconomic dataset, this paper shows that a straightforward application
of the DLS method to this dataset, with simple modification to allow for
delays in the release of data, also appears to satisfy at least ore criterion
of relative forecasting accuracy suggested by Doan, Litterman, and Sims.
However, the forecast errors of the Chilean BVARs are stil large in absolute
terms. Also, the model’s coefficients change sharply in periods marked by
policy shifts, such as the floating of the peso in 1982.

Introduction

The task of forecasting of main Chilean macro variables has been a hard one after
decades of significant structural changes and policy shifts. However, no clear under-
standing on the way these changes affect forecasting modeling can be achieved without
laying out the basic of a forecasting structure.
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In this paper, a particular forecasting methodology (due to Doan, Litterman, and
Sims 1984, DLS hereafter) is applied to Chilean data, as a first step toward a greater
effort in forecasting the evolution of Chile’s macroeconomy. The DLS methodoly is one
for estimating Bayesian vector autoregresive (BVAR) forecasting models, and it has been
succesfully applied to the U.S. macroeconomic dataset, which is relatively long and
stable.

Despite the brevity and volatility of the post-1976 Chilean macroeconomic datset
(the one used in this paper), we find that a straighforward application of the DLS method
to this dataset also appears to satisfy at least one criterion of relative forecasting accuracy
suggested in DLS. However, the Chilean BVAR’s forecast errors are still large in absolute
terms. An improved dataset or modifications to the basic DLS method may be needed to
significantly improve the model’s forecasting performance.

The DLS method has produced successful forecasting models for U.S. data

The DLS method mainly consists of procedures for choosing a Bayesian prior
distribution for the coefficients of a vector autoregression. A vector autoregression is a
multivariate time series model where a n x 1 vector of time-indexed elements is regressed
on its own lagged values, Typically, the value of the vector at time t is regressed on its
values at t - 1 through t - k. This means that the model contains n equations, each with a
constant, a disturbance term, and k lags of each variable on the right side. DLS describe
how to choose a prior probability distribution for the disturbance term variance and the
nk + 1 coefficients of each equation.

To simplify the task of choosing the nk + 1 means and {nk+1) x (nk+1) covariances
of each equation’s coefficients, DLS first propose that the prior distributions be chosen
from a particular family of distributions, Many aspects of the prior distribution are
common to all members of the family. For example, in each member of the DLS family,
the prior means of the coefficients are set to values associated with a random walk. Also,
the prior variance of the coefficient on the ky, lag of a variable declines as k increases,
indicating increasing confidence taht the coefficient should be close to its prior mean.

The members of the DLS do differ in a few dimensions. For example, members could
differ by the degree of confidence they express in the random walk prior means of the
coefficients, in the zero prior mean of the constant term, or in the importance of time
variations in the coefficients.

Each dimension by which the members differ is indexed by a so-called
hyperparameter. By specifying a value for each hyperparameter, the modell wi.Eon 49_5
select a particular prior from the DLS family. The number of hyperparameters is typically
small (in DLS, 8), and each has an economic or statistical interpretation, and usually a
aumerical scale as well, that does not vary with the model to which it is applied. This
means that forecasters probably can develop beliefs about the best values of these
hyperparameters more creadily than they can develop beliefs directly about the numerous
means and covariances of the prior distribution of the coefficients of a particular model.

In a fully Bayesian implementation of the DLS method, the forecaster would also
specify a prior distribution over the hyperparameters. In principle, at least, it io.&a then
be possible to construct the prior distribution of the model’s coefficients as a mixture of
the distributions associated with each individual hyperparameter setting, where the
weights used to form the mixture are taken from the prior over the hyperparameters.
Conventional Bayesian procedures-integration and scaling of the likelihood times the
prior-would yield a posterior distribution for the coefficients. In general, this involves
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intractable integrals and thus cannot be done. An obvious exception occurs when the
forecaster’s prior over the hyperparameters is degenerate, putting unit mass on a single
member for the DLS family. In this case the Kalman filter will easily compute the
posterior distribution of the coefficients.

DLS do not expect, however, that forecasters should be able to compute the difficult
integrals of the general case or identify a single member of the DLS family of
distributions as their own prior beliefs about their model’s coefficients. DLS propose a
tractable alternative that, under certain assumptions, should approximate the fully
Bayesian procedure just described. For each hyperparameter setting, the forecaster
computes how well a model with those hyperparameters woul have forecasted in the past.
The criterion DLS use to evaluate each model’s simulated forecasting performance can be
interpreted as a likelihood function relating the data and the hyperparameters. DLS
recommend using the hyperparameter setting that maximizes this likelihood function.

Since the data are used to pick the prior, this is clearly a strict Bayesian procedure.
However, DLS note that if (a) the forecaster’s priors over the hyperparameters are nearly
flat, (b) the DLS likelihood statistic is high within a region R and low elsewhere, and
(c) the important features of the estimated models are not too sensitive to variations of
the hyperparameters within R, then picking the hyperparameters that maximize the DLS
likelihood gives a model whose important features are approximately the same as the
modet implied by the fully Bayesian procedure, DLS then argue that condition (a) is
plausible and that conditions (b)and (c)seem to hold, at least for the US.
macro¢conomic dataset they examine. This rationale justifies the use of a non-Bayesian
procedure to estimate a *‘Bayesian” vector autoregression.

Whatever its rationale, the DLS method for estimating BV ARs has produced models
that forecast U.S. economic data reasonably accurately. In the simulated out-of-sample
forecasts, DLS (p. 22) observed “‘an average of about 2 percent improvement in the
one-step-ahead forecast errors in going from (4 system of univariate autoregressions for
each variable) to the final (BVAR)”. They claim (p. 24) that,

“Despite the small absolute gain in forecast accuracy, it is significant that the we
have documented a consistent gain from the use of a formally explicit multivariate
method in a system of this size. This has not been done before, to our knowledge.
The difference in accuracy that we find between multivariate and univariate methods
is substantial relative to differences in forecast accuracy ordinarily turned up in
comparisons methods, even though it is not large relative to total forecast eror.
Moreover, if we think of a decomposition of movements in the data into signal and
noise, with noise being the dominant component, then a 2 percent increase in
forecast accuracy must represent a much larger percentage increase in the amount of
signal that is being captured”.

Litterman (1986) and McNees (1986) present evidence that the actual forecasts
generated in the early 1980s by a small BVAR of the U.S. macroeconomy were also at
least as accurate, for real variables like real GNP and unemployment, as the forecasts of
the major U.S. economic consulting firms.

Chilean macroeconomic data pose severe difficulties to any forecasting method

Compared to the U.S. macroeconomic data series that DLS used, the Chilean
macroeconomic data series are short and volatile, Current practice among analysts of the
Chilean economy is to regard all data available for periods before 1976 as unreliable,
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incompatible with current data, or both. The validity of this practice needs to be
examined, but we have adopted it here. As a result we have about 144 monthly
observations, enough to encompass only about 3 or 4 normal busines cycles.

During this short period, however, busines cycles were not, at least by U.S. standards,
normal. The period began at the tail end of a rapid disinflation, and growth rates of the
seasonally adjusted M1 money stock {MINPS) and the wholesale price level (WPI)
continued to drift down from the 8-12 percent range in 1976 to stightly negative rates by
1981 (Figures 2b and 3b). Domestic interest rates (DIR) began the period at levels far
above the highest values in the DLS dataset, fell precipitously for a year, bout remained
high (for example, relative to percentage changes in the WPI) throughout the period
(Figure 6a; nominal rates are show). Policy regarding the foreign exchange value of the
Chilean peso (XCH) shifted twice, from a crowling-peg system to a fixed exchange rate in
1979 and back to a crawlins peg in 1982 (Figure 4a). The first exchange rate shift was
roughly contemporaneous with a peak in the price of a major export good, copper
(PCOB, see Figure 8a), and a liberalization of capital controls. It was folowed by surges in
Chilean capital inflows (KINF; Figure 5a) and international nominal rates of interest
(LIBOR; Figure 7a). The second exchange rate shift was preceded by sharp declines in the
(cooper) terms of trade (Figure 8a), capital inflows (Figure 5a), and seasonally adjusted
industrial production (IPINSS; Figure 1a). It was followed by a burst of inflation (Figure
3b), a spike in domestic interest rates (Figure 6a), and partial rebounds in the (cooper)
terms of trade (Figure 8a) and industrial production (Figure 1a). Variable like these also
vary in the United States, but generaily to a much milder degree and in a dataset whose
greater length allows more precise measurement of any associated changes in the
relationships among variables.

The brevity of the Chilean dataset, the volatility of the Chilean data serjes, and the
possibility that policy changes significantly affected the relationships among Chilean
variables all pose difficulties for any forecasting methodology. Successful forecasting
models may require longer datasets, the imposition of many coefficient restrictions
derived from structural econometric models of the recent Chilean experience, or more
sophisticated modeling of time variation in both the coefficients and the disturbance term
distributions. In this paper, we will not pursue thase possible avenues of improvement.
Instead we will show that DLS’s BVAR techenique, applied to the existing Chilean
dataset with no significant modifications to take account of the data’s volatily or the
effects of policy shifts, can till at least match the forecasting performance of univariate
time series models while capturing some relationships among variables.

The DLS method at least matches a system of univariate equations

We have applied a slightly modified version of the DLS BVAR methodology to the
January 1976 through December 1987 monthly values of the eight data series discussed
in the previous section. The method yields a quasi-univariate system of equations. ,_..rm.ﬁ is,
under apparently optimal hyperparameter settings, the estimated forecasting equations
forecast about as accurately as univariate equations and allow only moderately more
interaction among the variables. Experimentation with other hyperparameter 8S5.mm
suggests there may be a tradeoff between optimizing the model to predict industrial
production and optimizing it to predict other variables, such as inflation.

The Chilean BVAR was originally specified with six endogenous and two exogenous
variables. The six original endogenous variables were IPINSS (seasonally adjusted industrial
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production), MINPS (seasonally adjusted M1 money), WP1 {wholesale price index), XCH
(peso-doilar exchange rate), KINF (capaital inflows), and DIR (domestic interest rates).
The two original exogenous variables were LIBOR (international interest rates,
represented by the London interbank offter rate) and PCOB (the price of copper). The
original model had six equations for the endogenous variables, each with a constant term
and six lags of each of the endogenous and exogenocus variables were represented by
unrestricted univariate autoregressions, with 2 lags for LIBOR and 4 for PCOB.

We also experimented with models in which capital inflows were treated as
exogenous. The model reported here is somewhat intermediate. Technically it treats
capital inflows as endogenous and has six multivariate equations (plus univariate
equations for LIBOR and PCOB). However, the prior distribution of the coefficients in
the equation for capital inflows causes most of the coefficients on other variables in that
equation to be nearly zero. Except for contemporaneous correlations between its
disturbance term and other disturbance terms, capital inflows are nearly exogenous.

The modet presented here differs from the initial model by allowing for varying
delays in the release of data for its variables. Data on the money supply, the wholesale
price index, the exchange rate, domestic and foreign interest rates, and the price fo
cooper in month t are assumed to all first be available in month t + k, k > 1. Data on
industrial production and capital inflows in month t are assumed to be released two
months later (t+k+2). Accordingly, the equations for IPINSS and KINF are augmented
by terms for the contemporaneous and lead one values of the other variables. .

The prior means of the coefficients of the six endogenous equations are set according
to the continuous-time random walk prior. That is, the prior means are seét to conform to
a model in which each variable evolves as a continuous function of time such that at each
instant its expected value at any future date equals its current value. The variables are
observed only as discrete monthly averages, however. Discrete time averages of
continuous random walks are generated by autoregressive processes with an infinite
number of lags, where the coefficient on the Kth lag is given by

(t—ayak—1)

where & =+/3-2 [see Working (1960) or Christiano and Eichenbaum (1987)]. In each
equation of the Chilean BVAR, the coefficients on the six lags of the dependent varisble
are give values according to this formula, with k =1, 2, 3, 4, 5, 6. All other coefficients
have a prior mean of zero.

The prior variances of the coefficients in the Chilean BVAR are govemed by ten
hyperparameters —the discussed in DLS ad two more subsequently introduced by Sims.
Five of these hyperparameters affect the variances of each coefficient individually. Theree
~including the two new ones— affect the variances of linear combinations of coefficients.
Two control the nature of the time variation in the coefficients.

Before allowing for restrictions on linear combinations of coeficients, the prior
variances of the model’s coefficients have the following form:

1. For the variance of the kP lag of the it? variable in the ith equation,

TITE x OWN
k x exp[WT x WEIGHT (3, 9)]

1. var A»“.wu =
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. For the variance of the k'" lag of the j*! variable in the i*" equation (i=-J, k+0),

TITE x CROSS x o}
k| x exp [WT x WEIGHT (i, )] x Qw

2. var R.WV =

3. For the variance of the coefficient on the contemporaneous value of the it equation
(i74; i=IPINSS or i=KINF),

; 2 x TITE x CROSS x 0}
3. V(W)= WT X WEIGHT G, )] x @)
4, For the variance of the constant term in the ith eguation,

4. var(c)) = TITE x CON x o}.

In these exressions, oy is the variance of the disturbance term E.oazm:ou i. The o; are
treated as though they are know but are in fact estimated as 0. times the standard error
of the residual in a regression of variable i on six lags of itself. The terms WEIGHT(, j)
come from 6 x 8 matrix

0.0 1.0 1.0 1.0 1.0 1.0 1.0 10
10 0.0 0.5 0.5 0.5 1.0 1.0 10
1.0 0.5 00 0.5 1.0 1.0 1.0 1.0
2.0 20 2.0 1.0 2.0 20 2.0 20
1.0xKW 1.0xKW 1.0xKW 1.0xKW 0.0xKW 1.0xKW 10xKW 1.0xKW
20 20 2.0 2.0 20 1.0 20 20

Along with the hyperparameter WT, this matrix allows selective alteration of the
variances of 2 given variable’s coefficients in a given equation. ) )

We exploited this possibility by experimenting (in the initial model only) E::.a.u:o:u
values of KW, which controls the influence other variables have on capital inflows.
Treating KW as, in effect, an eleventh hyperparameter, we selected a value of KW =8§,
which makes capital inflows nearly a univariate process.

Except for the KW factor, the rest of the WEIGHT matrix is patterned after the one
used by DLS. Rows 1 and 5, for IPINSS and KINF, have the basic DLS pattern of zeroes
on own lags and ones on other variables. Rows 4 and 6, for XCH and DIR, have ones on
own lags and twos on other variables, the pattern DLS suggest for variables .n%waa.:z
likely to foltow random walks. Rows 2 and 3, for MINPS and WPI, have a modified form
of the 0-1 patern. Because they are likely to be sensitive to each other, to the mxnrw.:mm
rate and, in the case of MINPS, to KiNF, these other variables are given the intermediate
downweighting factor 0.5 in rows 2 and 3. )

The terms OWN, CROSS, and CON are hyperparameters governing the size of the
variances of the coefficients of, respectively, own lags (lags of the dependent variable),
cross lags (lags of variables other than the dependent variable), and the constant terms.

ok
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Finally, the hyperparameter TITE is used to scale all prior variances up or down
simultaneously.

Three hyperparameters govern the tightness with which three linear restrictions are
imposed on the coefficients. SUM is used to control the tightness of a restriction that the
sums of the coefficients on own lags should be one and the sums of the coefficients onn
cross lags should be zero. BEGWT controls the tightness of other restriction that even if
the SUM restriction is violated, the coefficients on all variables should collectively imply
that the best forecast of a variable is given by the random walk prior. NOMWT controls
the tightness of a long-run superneutrality constraint. This constraint allows the sums of
individual nominal variables to deviate from one in their own equations and from zero in
other equations, but requires that the sum of all nominal variable equations and
approximately zero in other equations (nominal here means variables measured in units
of domestic currency and hence likely to inflate at about the same rate in the long run.
MINPS and WPI were treated as nominal here. XCH was not, since it partly depends on
inflation outside Chile and because experiments suggested little gain from treating it as
nominal).

The eight hyperparameters discussed so far determine the prior mean, g, and prior
varignce-covariance matrix, £o. Two more hyperparameters govern how the posterior
mean and variance evolve as the model is estimated by applying the Kaiman filter to the
observation one by one. The hypothesized law of motion of the coefficients, which must
be supplied to the Kalman filter, is

(Bi—Bo) =DECAY x (8;.1 o) +uv

where u; is taken to be normally distributed whith mean zero and variance-covariance
matrix TVAR x Zp. DECAY and TVAR are the two hyperparameters governing,
respectively, the rate at which the coefficients decay toward their prior mean and the
extent to which they vary around their expectated path.

We selected values for the ten hyperparameters by attempting to maximize the
likelihood statistic developed by DLS. For the i*P endogenous variable, the likelihood
statistics for any given hyperparameter setting is computed as a weighted average of
variable s ome-step-ahead forecast errors when the model is estimated with those
hyperparameters. The one-step-ahead forecast errors are computed recursively, with each
forecast based on coefficients estimated only through the data that would have been
available when the forecast was made. Forecasts of exogenous variables, which are needed
to forecast the endogenous variables, are computed in the same fashion, using their
univariate equations. The weights on the individual forecast errors in the average are given
by the forecast’s conditional variance (conditional onn the data and estimated probability
distribution of the coefficients at the time the forecast was made) divided into the
geometric mean of all conditional forecast variances for variable i. The overall likelihood
statistics for the model is ordinarily the sum of the likelihoods for each edogenous
variable, but we also experimented with maximizing the likelihoods of individual
equations (see below).

In attempting to find the hyperparameter setting with the highest likelihood, we
scarched over hundreds of possibilities. Computing the likelihood for a given
hyperparameter setting takes about 10 seconds on an Amdahl dual 580 mainframe
computer system, and a large-scale search on a personal computer would take days. Even
on the mainframe, it is not practical to thoroughly search all interesting hyperparameter
settings. We chose a method called axial search, which searches over one hyperparameter
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at a time while keeping the others fixed at their best (up till then) values. With about ten
values for each hyperparameter and ten hyperparameters, each axial search iteration
covered about 100 settings.

The success of axial search depends on the shape of the likelihood function and the
order in which the hyperparameters are searched. If the likelihood is symmetric (around
lines through its peak and parallel to the axes) as illustrated in Figure 16a, then axial
search will probably find a nearly maximizing setting for the hyperparameters no matter
in what order they are searched. However, if the likelihood has the asymmetric shape of
Figure 16a, then results of axial search may depend on the order in which the
hyperparameters are scearched, and some orders may not find settings Fﬁ are close to
optimal, Even repeating the axial search from the best point of a previous axial search
may not get around this problem if, for example, the likelihood is asymmetric and has
multiple locat peaks. To lessen the possibility of such a result, we sometimes varied the
starting values and search order of the hyperparameters.

For the model we have described, with KW = 8 implying a very narly univariate
equation for endogenous KINF and exogenous LIBOR and PCOB having strictly
univariate equations, the highest likelihood value we found in our initial hyperparameter
search is associated with estimated equations for the other five endogenous variables that
are also not far different from univariate. The chosen hyperparameters, shown in Table 2,
are not much different from those typically found in applications of the DLS method to
U.S. data, although the TITE*CROSS preduct of 0.0001 implies a relatively high degree
of confidence that the coefficients of variable j in equation i (i#]) are zero. However, as
also show in Table 2, the BVAR model's root mean squared forecasting errors 1, 6, and
12 months ahead during 1981-87 are generally similar to, and for IPINSS worse than,
those of de system of univariate equatios shown in Table 1. The similarity of the
univariate and BVAR models is also evident in the histories of their forecast errors, shown
in the upper panels of Figures 9-14.

In addition, a decomposition of the sources of forecast error indicates that the
BVAR model attributes a very high percentage of the variance of each variable’s forecast
error to the variable itself (that is, to its own disturbance term). For forecasts of MINPS,
WPI and KINF 1-6 months ahead, nearly all of the variance of the forecast errors is
attributed to the variable’s own disturbance term. This is somewhat less true of IPINSS,
XCH and DIR. The slightly lower degree of autonomy displayed by these variables
apparently reflects contemporaneous correlations between their disturbance terms and
the disturbance terms of the other variables, for the univariate system shows roughly the
same degree of autonomous variation in these variables. After one year, some of .:ﬁ
variance decompositions show stronger cross-variable effects, but these figures are subject
to wide confidence bands and thus may not be significant. [See Runkle (1987) for a
discussion of this point. See Doan and Litterman (1986, p. 19-4) for a vnonnmﬁ.:.o for
computing confidence bands for BVARs]. Though not shown in the tables, estimated
coefficients ofn variables other than te dependent variable or constant term are also small,
Similarly, the response of variable j to a suprise movement in variable i (the impulse
response of j to i) is generally small. o

Despite the similarity of the BVAR and univariate models, the likelihood statistic
favors the BVAR. The discrepancy between the likelihood statistic, which favors the
BVAR, and the root mean squared errors, which show mixed results, may be due to
several factors. One obvious reason is that the system likelihood, as the sum of the
individual equation likelihoods, balances the BVAR’s inferior performance in forecasting
the other five endogenous variables. Another possible reason is that the equation
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likelihood, unlike the root mean squared error, does not necessarily give equal weight to
two errors of the same magnitude. An error in a period for which the conditional variance
of the forecast error was high will depress the likelihood less than an error of the same
size occurring when the conditional forecast error variance was low.

Some of the forecast error histories in the upper panels of Figures 9-14 also indicate
some possible adventages for the BVAR. In particular, the univariate model’s forecast
errors have on average been more biased than the BVAR'’s errors in recent years, as shown
by the greater tendency of running totals of univariate model errors to drift up or down
since about 1984.

Changing the likelihood criterion by omitting the likelihood of one or more
endogenous variables can lead to somewhat different results. We experimented with
maximizing just the likelihood of WPI and just the likelihood of IPINSS. In the former
case, shown in Table 3, the overal ystem likelihood is actually higher tan in Table 2,
where the hyperparameters were chosen in an attempt to maximize the system likelihood.
The axial search procedure for Table 2 obviously failed to maximize the system
likelthood. This suggests that a technique like Sims's Bayesian interpolation of the
likelihood surface may be useful (Sims 1986). The optimal values in Table 3 are quite
extreme, especially for SUM and NOMWT (SUM was always the last hyperparameter
whose values were searched, and its value was set to zero during the initial searches over
values of the other hyperparameters. NOMWT, by contrast, was generally among the first
three or four hyperparameters searched over). Together they keep the sums of
coefficients fixed at their prior means. The rapid rate at which parameters decay toward
their prior means (DECAY) is also unusual.

There are other anomalies in Tables 2 and 3. Despite the tight priors and rapid decay
toward the prior means of its coefficients, the model of Table 3 shows slightly more
corss-variable interaction in its variance decompositions than the first BVAR. Also,
despite a stronger system likelihood and generally stronger equation likelihoods, the
Table 3 model’s root mean squared errors are generally higher than for the BVAR of
Table 2.

Maximizing solely the likelihood of the IPINSS equation appears to imply modest
changes in forecast performance but more substantial changes in the coefficients of the
models. As shown in Table 4, the system likelihood for the IPINSS optimized model is
lower than in Tables 2 or 3. Nonetheless, the equation likelihood for [PINSS and some
root mean squared errors are superior in Table 4. The lower panels of Figures 9-14 also
suggest that the model of Tabie 4 predicts IPINSS somewhat better, and other variables
somewhat worse, whan the other BVARs.

The running totals of one-step-ahead forecast errors in Figures 9-14 give a somewhat
different perspective on the model of Table 4. For all variables except DIR, the Table 4
model has has less of a tendency to consistently under or over predict during the 1981-83
period, as shown by the gaps that open up at that time in panel I of Figures 9-14.
Thereafter, the lines in the I panels are roughly parallel, sugesting nearly equal
tendencies to under or over predict. The superiority of the Table 4 model in 1981-83 may
be just a fluke, attributable to the small sample size. Or it may be evidence that the Table
4 model captures useful information about turning points that that the Table 2 model
misses. Perhaps time will tell.

The difference in the Table 4 model’s forecast performance appears to be small,
however, compared to the change in the coefficients of the model. Figure 15 for example,
show that the coefficients of the Table 4 model have evolved very differently from those
of the Table 2 model (and the coefficients of the Table 3 model don’t evolve at all) in the




54 REVISTA DE ANALISIS ECONOMICO, VOL. 3, N© 2

case of IPINSS. One difference is that the coefficients optimal for forecasting IPINSS
allow much more interaction among variables. Table 4 reveals much lower degress of
autonomy in its variance decompositions of all endogenous variables, at least after one
year. This may be due to the zero values of the hyperparameters SUM and NOMWT
chosen in the maximization of the likelihood of [PINSS. The relatively high degree of
time variation in the model’s coefficients, both in the IPINSS case and in the cases of
remaining variables (not shown), could also play a role. Also note that in bot models
changes in coefficients were especially rapid in about 1982 and, to a lesser degree, about
19835,

The generally moderate changes in the BVAR model's forecasting performance as the
hyperparameters are varied around the optimal values is encouraging in one sense. As
discussed above, this is one of the conditions necessary for interpreting the likelihood
maximization performed here as an approximately Bayesian procedure. The forecasts of
all of the models above have been fairly similar historically, and any one of them thus
approximates reasonably well the mode of a Bayesian posterior distribution over future
events. This convenient result may not extend to questions about the structure of the
Chilean econorny, given the wide variation the models show in the relationships among
variables and the evolution of coefficients.

Conclusion

In some ways, this initial attempt to estimate a Chilea BVAR has been successful.
With no significant modifications, the DLS method produces a multivariate model that
captures at least a smail degree of interaction among key macro variables while achieving
much higher DLS likelihoods and perhaps slightly lower root mean squared forecast errors
than a system of univariate equations. DLS suggest that thisis not a trivial accomplishment.

At the same time, the Chilean BVAR of Table 2 is not a lot better thar or even very
different from a system of univariate equations. Further research on Chilean BVARs
should probably look for improvements in three directions. One path toward possible
improvements would be to tailor the DLS method to the Chilean situation. This could be
done, for example, by modifying the time variation of the coefficients to make them
more stable within but less stable across policy regimes (the tendency for the models’
coefficients to change rapidly during periods of well-known policy shocks, such as during
1982, secomends this path. See Figure 15). It could also be attempted through the
specification of restrictions on the variance-covariance matrix of the disturbance terms,
perhaps with an eye toward achieving the kind of structural identification discussed by
Sims (1987). An alternative way to improve Chilean BVARs would be to reconstruct
a longer macroeconomic datset. Finally, Sims has suggested further modifications
(beyond the BEGWT and NOMWT priors used here) to the DLS method to allow for
nonnormality and conditional heteroscedasticity in the distributions of the equation error
terms.
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TABLE 1

PERFORMANCE STATISTICS FOR A BVAR MODEL WITH
AN APPROXIMATELY UNIVARIATE HYPERPARAMETER SETTING (2 LAGS)

Hyperparameters
OWN = 100,000,000.00 SUM = 00
CROSS = 0.000,000,000,1 BEGWT = 0.0
CON = 100,000,000.00 NOMWT = 0.0
WT = 0.0 TVAR = 0.0
TITE == 1.0 DECAY = 1.0
Performance Statistics
DLS Likelihood
SYSTEM IPINSS MINPS WPI XCH KINF DIR
+ 389.72 +200.61 +216.28 +237.63 +201.84 -382.33 -84.33
Typical Forecast Errors* (percent}
JPINSS MINPS WPI XCH KINF DIR
1-month-ahead 3 2.94 2.50 3.31 136,56 19.99
G6-months-ahead 6.48 11.65 13.06 18.53 163.88 38.94
i 2-months-ahead 9.58 21.11 23.83 35.28 193.57 47.23

Autonomous Portion of Forecast Exror Variance** (percent)

LIBOR PCOB MiNPS WPI XCH KINF DIR  IPINSS
1-month-ahead 100.0 98.3 99.5 922 90.6 98.5 87.5 85.8
6-months-ahead 100.0 98.3 99.5 9522 90.6 98.5 875 B5.8

12-months-ahead 100.0 98.3 99.5 92.2 906 98.5 87.5 85.8

*  Root-mean-squated errors in simulated out-of-sample forecasts from June 1381 to November
1987.

**  Portion of forecast error variance attributed to own innovations. Computed from coefficients
that where estimated over the full 1976-87 period and variance-covariance mateix of disturbances
that was estimated over the October 1978 to December 1987 period. Choleski decomposition of
variance-covariance matrix performed with variables ordered as here (from LIBOR to IPINSS).
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TABLE 2
PERFORMANCE STATISTICS FOR A BYAR MODEL WITH
HYPERPARAMETERS SET TO MAXIMIZE THE DLS LIKELIHOOD

Hyperparameters

OWN = 0.1 SUM = 250

CROSS = 0.00001 BEGWT = 0.0

CON = 1,000.0 NOMWT = 2.0

wT = 10 TVAR = 00

TITE = 10.0 DECAY = 10

Performance Statistics

DLS Likelihood

SYSTEM TPINSS MINFS WPI XCH KINF DIR

+472.10 +197.36 +225.73 +296.36 +206.86 —-372.22 -31.98

Typical F t Errors® (p t)}

IPINSS MINPS WP XCH KINF DIR
1-month-ahead 3.31 2.74 1.73 3.20 128.60 19.66
6-months-ghead 6.59 8.47 10.18 17.86 151.98 35.10

12-months-ahead 10.32 12.39 16.27 33.34 181.52 39.88

Autonomous Portion of Forecast Error Variance** (percent)

LIBOR PCOB MINPS WPI XCH KINF DIR  JPINSS
{-month-ahead 100.0 98.2 99.6 99.6 99.6 84.2 85.8 91.7
6-months-ashead 100.0 93.2 993 994 84.3 98.0 858 91.5

12-months-ahead 1000 - '98.2 96.1 98.7 84.3 93.0 856 90.5

*  Root-mean-squared errors in simulated out-of-sample forecasts from June 1981 to November

1987.

**  Partion of forecast error variance attributed to own innovations. Computed from coefficients
that where estimated over the full 1976-87 period and variance-covariance matrix of disturbances
that was estimated over the October 1978 to December 1987 period. Cheleski decomposition of
vartance-covariance matrix performed with variables ordered as here (from LIBOR to IPINSS).
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TABLE 3
PERFORMANCE STATISTICS FOR A BVAR MODEL WITH
HYPERPARAMETERS SET TO MAXIMIZE THE DLS LIKELIHOOD OF WPl ONLY

Hyperpazameters

OWN = 0.08 SUM = 100,000.0

CROSS = 0.01 BEGWT = 3.0

CON = 10 NOMWT = 10,000,000.0

WT = 3.9 TVAR = 0.000,000,001

TITE = 290 DECAY = 0.999

Performance Statistics

DLS Likelihood

SYSTEM IPINSS MINPS WP1 XCH KINF DIR

+486.37 +202.15 +225.04 +301.85 +213.94 -371.57 -85.05

Typical Forecast Errors* {percent)

IPINSS M1NPS WFP1 XCH KINF DIR
1-month-ahead 3.29 2.95 1.75 3.04 127.69 20.14
6-months-ahead 7.01 13.14 11.85 16.24 151.16 39.42

12-months-ahead 12.53 30,42 22.67 29.09 182.93 50.04

Autonomous Portion of Forecast Error Variance*® (percent)

LIBOR PCOB MINPS WPl XCH’ KINF DIR  JPINSS
1-month-ahead 100.0 98.2 99.7 995 83.5 98.6 B6.8 91.7
6-months-ahead 160.0 98.2 971 9338 834 98.6 86.7 87.9

12-months-ahead 100.0 98.2 91.7 864 83.3 98.6 86.5 80.9

*  Root-mean-squared errors in simulated out-of-sample forecasts from June 1981 to November

1987.

**  Portion of forecast error varlance attributed to own innovations. Computed from coefficients
that whete estimated over the full 1976-87 period and variance-covariance matrix of disturbances
that was estimated over the October 1978 to December 1987 period. Choleski decomposition of
variance-covariance matrix performed with variables ordered as here (from LIBOR to JPINSS).
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TABLE 4 FIGURE 1
IPINSS

PERFORMANCE STATISTICS FOR A BVAR MODEL WITH (Industrial production, seasonally adjusted)

HYPERPARAMETERS SET TO MAXIMIZE THE DLS LIKELIHOOD OF IPINSS ONLY

A'LEVELS P B: LOG DIFFERENCES
13 ..\}w ’
" - 4_ -
hL ' L\
Hyperparameters o " «{), . ]
OWN = 0.7 SUM = 00 "] +
CROSS = 0.001 BEGWT = 0.0 .
CON = 2,0000 NOMWT = 0.0 * * -
wr = 10 TVAR = 0.00001 .
TITE = 100 DECAY= 1.0 *
" T 1 M T T T T M T M T T e T T T T T T T T L] T T
T e A A e A T R R R I R AL PR LS Y :
Performance Statistics :
DLS Likelihood
SYSTEM IPINSS MI1NPS WPl XCH KINF DIR
+451.61 +211.63  +211.29 +289.14 +200.43 -372.31 -88.56
Typical Forecast Errors® (percent}
IPINSS MINPS WPl XCH KINF DIR .
1-month-ahead 2.98 291 1.77 3.26 126.36 20.23 : FIGURE 2
6-months-ahead 5.59 10.95 11.01 19.62 150.86 36.53 ; _
12-months-ahead 9.06 20.73 20.45 38.04 173.00 4238 3 MINPS
3 (M! money supply, seasonally adjusted) o
Autonomous Portion of Forecast Error Variance®* (percent} b _
] A: LEVELS B: LOG DIFFERENCES
LIBGR PCOB  MINPS  WPL XCH KINF DIR  IPINSS ; - ;o
i-month-ahead 100.0 98.2 994 999 838 96.5 849 93.5 . \xc i
6-months-ahead 100.0 98.2 650 539 79.5 96.5 82.6 83.3 ; k m
12-months-ahead 100.0 93.2 354 274 59.6 96.5 734 68.5 M / :

)

*  Root-mean-squared errors in simulated out-of-sample forecasts from June 1981 to November p
1987. i

*%  Portion of forecast error variance attributed to own innovations. Computed from coefficients
that where estimated over the full 1976-87 period and vaziance-covariance matrix of disturbances
that was estimated over the October 1978 to December 1987 period. Choleski decomposition of
variance-covariance matrix performed with variables ordered as here {from LIBOR to IPINSS),
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FIGURE 7

LIBOR
(London interbank offer rate of interest)
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FIGURE %
HISTORY OF ERRORS IN FORECASTING IPINSS
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Figure 9 (Continued)

G: RUNNING TOTAL OF 1 STEP ERRORS
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Figure 10 (Continued)

J: 6 STEP AHEAD FORECAST ERRORS
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FIGURE 11
HISTORY OF ERRORS IN FORECASTING WPI
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Figure 11 (Continued)

G: RUNNING TOTAL OF 1 STEP ERRORS
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FIGURE 12
HISTORY OF ERRORS IN FORECASTING XCH
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Figure 12 (Continued)
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~ FIGURE 13
HISTORY OF ERRORS IN FORECASTING KINF
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FIGURE 14
HISTORY OF ERRORS IN FORECASTING DIR

Figure 13 (Continued)
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Figure 14 (Continued) FIGURE 15

EVOLUTION OF COEFFICIENTS IN THE IPINSS EQUATION
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Figure 15 (IPINSS equation, continued)
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FIGURE 16A
SUCCESSFUL AXIAL SEARCH
A
H,
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—
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Iu likelthood
contours
FIGURE 16B
UNSUCCESSFUL AXIAL SEARCH
»
H,
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Asymmetric
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Hy

Explanation: Each graph shows two searches. Each search begins at the initial guess (HI, H3). The
search denoted by =----rr-rre-mns and * fitst optimizes H, while fixing Hy at H3. Tt then
optimizes Hy while fixing H; and HI. The search denoted by —-—-—-— or ~ firat
optimizes Hy (with H; =H?) and then optimizes H, (with H, = ),
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UN MODELO DE AUTORREGRESION VECTORIAL PARA ANALIZAR
LA INFLACION EN MEXICO DE 1970 a 1987*

LUIS G. ARIAS y VICTOR M. GUERRERO

Direccién de Investigacién Econémica,
Banco de México.

Abstract:

A Veetor Autoregressive Model of the mexican economy was employed to
empirically find the transmission channels of price formation, The structural
changes affecting the behavior of the inflation rate during 1970-1 987,
motivated the analysis of the changing influences of the explanatory variables
within three different subperiods, namely: 1970-1976, 1978-1982 and 1983-
1987.

A main finding is that, among the variables considered, the public prices were
the most important in explaining the variability of the inflation, irrespective
of the subperiod under study. Another finding is that inflationary inertia
pleyed a different role in each subperiod.

I. Introduccién

En el presente articulo se analizan la caracteristicas del proceso inflacionario en
México a partir de lo afios setenta, mediante la técnica de vectores autorregresivos (VAR).
El emploo de esta técnica parece especialmente apropiade para ¢} problema en cuestion,
pues construir un modelo estructural de la inflacion a nivel mensuzl o trimestral requeri-
ria la imposicién de restricciones de identificacién, posiblemente carentes de fundamento
tebrico. Sims (1980) ha criticado la metodologia tradicionat de construccion de modelos
estructurales y en particular la imposicion de restricciones a priori, sugiriendo en su lugar
el emplea de técnicas econométricas que permitan a los datos “hablar por ellos mismos”™
respecto a las posibles interrelaciones de las variables. Los modelos VAR estin disefiados

*  Una versidn preliminar de este articulo fue presentada en la 8% Reunidn Latinoamericana de la
Sociedad Econométrica, celebrada en San Fosé, Costa Rica, 2-5 de agosto de 1988, Los autores
agradecen la ayuda computacional prestada por R. Barrientos.




