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Apéndice
Definicion de variables y fuentes de informacién

Precios externos: Se construyé un indice mundial de precios al consumidor (base
1980==100), en términos de una canasta d¢ monedas de los 22 principales socios comer-
ciales de México, ponderados por su participacién en el comercio internacional de nuestro
pais (con dichos socios comerciales México realiza mds del 90% de su comercio interna-
cional), Fuente: Estadisticas del Fondo Monetario Internacional,

Tipo de cambio efectivo: Se construyé come la relacién del peso respecto a una ca-
nasta compuesta por las monedas de los 22 pafses citados en el pdrrafo anterior. Fuente:
Estadisticas de} Fondo Monetario Internacional.

Billetes y monedas como proporcién del PIB real: Saldos mensuales de billetes y
monedas en poder del piblico. E1 PIB real mensual se construyd desagregando el PIB real
anual utilizando el indice de volumen de la produccién industrial como variable auxiliar.
Fuente: Indicadores Econdmicos, Banco de México.

Precios del sector piblico: Indice (base 1980=100) de los precios y tarifas piblicos
controlados por la Secretarfa de Hacienda y Crédito Pablico. Fuente: Subgerencia de
Precios, Banco de México.

Precios: Indice Nacional de Precios al Consumidor. Fuente: Indicadores Econdémicos,
Banco de México.

Salario minime: Salario minimo general promedic publicado en el Boletin de la
Comisién Nacional de los Salarios Minimos.
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Abstract:

In this study, we focus on the role of the exchange rate in explaining varia-
tions in agricultural commodity prices. Particular attention is paid to sta-
tionarity and models in levels versus differences and we find differencing
useful in making agricultural prices forecasts.

I. Introduction
The times series approach to forecasting

There has been an historical dichotomy: in the econometrics of forecasting literature
that has admitted two approaches to the building of forecasting models. These two
approaches are: (1) Structural econometric/causal forecasting models, and (2) Time
series models (Kennedy, 1985; Granger and Newbold, 1986). Recently, some authors
have highlighted the compatibility and complimentarity of these two approaches, but to
a large degree the two literatures remain separate! ,

Structural econometric models are specified, as is well known, by appeal to prevailing
economic theory. They consist of a set of dependent variables (the variables to be fore-
casted) and a set of independent variables which are used to “explain™ or account for the
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mand and Trade Section, ERS/USDA for providing ail of the price and exchange rate data,
Funding for this research was provided by the Agriculture and Rural Economics Division of the
Economic Research Service, U.S. Department of Agriculture, under Cooperative Agreement
58-3198-5-00402.
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variation in the dependent variables. These models aim to capture the structural relation-
ships, identified from theoretical investigations, among the variables in the economy,
often employing numerous overidentifying restrictions in the process. The popularity
of large-scale simultaneous equations models of this type reached a peak in the 1960s

and early 1970s. They continue to be widely used in commercial forecasting and, to an.

extent, in research. However, in the late 1970s, forecasters using these models, in par-
ticular macroeconomics models, were confounded by their failure to accurately predict
simultaneous high inflation and unemployment levels (Lucas and Sargent, 1979). This
break-down in forecast accuracy opened the door for simpler, less costly, and more
accurate alternative forecasting models. Time series models offer one such alternative.

Time series models are built on the premise that a time series has a particular re-
curring statistical history which can be modelled and then exploited for the purpose of
forecasting. The unique statistical history is used to project forward the likely path of the
time series, thus generating an extrapolative forecast. Behind the idea of time series
forecasting is the eclectic view that we may not know enough the true structure of the
economy to construct a detailed structural econometric model that will forecast well
(see, for example; Sims, 1980).

For illustrative purposes we shall delineate two classes of time series models, those
that do not allow for dynamic interactions among variables (univariate} and those that
do (multivariate). Univariate time series models express the variation in a time seres as
a function of autoregressive terms (past own values) and moving average terms (con-
temporaneous and past errors)®:

;M\n = ﬁnuﬁ.»lu +... +S%\Nqbt.% + € ~ @—mwlu — = Qnmulﬂ AU—LV

Muitivariate time series models reflect the importance of *“the influence of other ob-
servable variables known or suspected to be related to the series of interest” (Kling and
Bessler, 1985). The multivariate time series models to be used herein will be vector auto-
regressions (VARSs) augmented, where appropiate, by error correction terms to form
vector error-correction modets (ECMs), as discussed below. A VAR model does not
impose e priori restrictions such as exogeneity or functional form as used for the iden-
tification of structural simultaneous equation models. Instead, 2 VAR is a reduced-
form model in which interactions that are present in the data emerge on their own. If
Xi = (Xyp,..., Xmr) is a vector of variables that we wish to model with a VAR, under
the conditions of joint-stationarity and ergodicity (see Granger and Newbold, 1986)
X; has a vector autoregressive representation:

P(BYX; = E; (12

where ®(B) is an m x m infinite matrix function in the backshift operator, and £; is a
vector of well-behaved error terms® . Each element of &(B) follows the structure:

34(B) uama i, & B¥

This infinite AR structure is then approximated by a finite mﬁﬁamam&ou mm... empirical
estimation. Choosing the lag length in a VAR is an important issue in empirical work,

and will also be addressed in our paper.

Yt
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In practice, the question of whether a traditional structural econometric model or
a time series model is better for a wp&n:w&. forecasting project turns on the validity of
the prior information that we have®. If a particular economic theory is “true”, it would
be unwise not to use that available information®. A univariate ARIMA model incorpo-
rates no prior economic information thus would be a poor choice as a forecasting model
in the face of a structural econometric model imposing valid identification restrictions
(Prothero and Wallis, 1976). In fact, however, ARIMA models frequently out-perform
structural econometric models in forecasting®.

The multivariate time series approach asserts that the truth lies somewhere between
the traditional simultancous equation approach and atheoretical univariate time series
models. Through economic theory, variables can be identified that have a high prior
probability of having an important effect on the variables to be forecasted, though we
are not quite certain how these interrelationships are manifest in, say, particular func-
tional forms or exclusion and exogeneity restrictions. VAR models can be viewed as
quasi-time series models in that they are specified using some & priori information from
economic theory to guide the selection of the variables to be included in a specification
in order to produce a model with superior forecasting accuracy.

. Multivariate time series analysis in agricultural economics

_ Much of the recent agricultural economics literature that is concerned with use of
time series models reflects an interest in relationships among various economic time
series. Bessler (1984a, 1984b) discusses the methodological aspects of fitting VARs and
examines dynamic economic relationships in the hog market and the relationship of
relative prices and money in Brasil, respectively.

In this study, we focus on the role of the exchange rate in explaining variation in
agricultural commodity prices. Orden (1986) investigated the dynamic effects of macro-
economic shocks on U.S. agriculture using VAR models. He found evidence that move-
ments in the real exchange rate have substantial on agricultural exports and real prices
received by farmers, Orden’s study used policy analysis techniques developed by Sims
(1980, 1986), and employed Sims’ lag selection criterion, Thornton and Batten (1985)
found that, for money-income relationships, different lag structures can change the out-
come of exogeneity tests. Therefore, we might place value on the consideration of alter-
native test procedures for lag length selection and such procedures will be used herein.

From a purely forecasting perspective, Bessler and Babula (1987) found the real
exchange rate to have little impact on improving the accuracy of forecasts of wheat
exports. The real exchange rate did have a notable effect on increasing accuracy of
forecasts of real wheat prices”. The impact of real exchange rates on forecasts of real
wheat, corn, and soybean prices will be a primary focus of this paper®.

As Bessler and Badula’s results suggest, multivariate time series models are not
always able to out-perform univariate madels in out-of-sample forecasting ability (Litter-
man, 1984; Brandt and Bessler, 1984). This is puzzling as one might expect that a multi-
variate model should forecast at least as well as a univariate model because it theoretically
encompases that vnivariate model.

The failure of multivariate models to out-forecast univariate models is likely the
result of ignoring very important characteristics of time series datz. For example, Litter-
man has argued that aggregate economic data suffers from a low signal-fo-noise ratio
meaning that the useful (systematic) variation in the time series is obscured by purely
random fluctuations. This random noise overpowers the useful signal, ie. the variation
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that can be used to explain variations in another variable in a multivariate mode]. Litter-
man (1986) explains that the parameters in a VAR will likely fit both the useful sys-
tematic variation as well as the random variation, fesulting in an overparameterized
model. The random variation, however, is not useful for forecasting. The task of the
forecaster, then is to devise a way to filter out the random noise to reveal the variation
that is systematic. The multivariate forecasting problem is thus a trade-off between
oversimplification and overparameterization.

Model Specification Issues

Litterman (1976) proposes a way of filtering the noise from the signal through the
use of Bayesian priors’. The point of using Bayesian priors is to attack tha overpara-
meterization problem inherent in unrestricted. VARs where the modeller can quickly
run out of degrees of freedom even in a moderality large sample. Litterman suggests
that it is reasonable to expect that coefficients on long lags are more likely to be zero
than coefficients on shorter lags. By specifying Normal prior distributions about zero
with smaller standard deviations for the coefficients as lag length increases, long lags
are allowed to enter the equations at the margin only if there is strong evidence for such
relationships in the data (see, Litterman, 1984; and Doan, Litterman, and Sims, 1983 for
discussions of Bayesian VAR models for forecasting).

Bessler (1986) addresses the use in forecasting of a nonsymmetric (i.e., the prior on
cross variable effects is different from the prior on own lags) random walk Bayesian prior
on the coefficients in a VAR model for the U.S. hog market'®. He finds the VAR with
this priot out-performs a univariate autoregression, an unrestricted VAR, and a Bayesian
VAR with a symmetric prior. Kling and Bessler (1985) also found that Litterman’s
Bayesian VAR forecasted very well for macroeconomic data.

An alternative to the Bayesian procedure for obtaining a more parsimonious VAR
representation is to use a multivariate statistical decision criterion for the choice of lag
length. Lutkepohl (1985) has investigated the use of 12 such statistical decision rules
in a monte carlo simulation. He found several of them to be quite accurate in choosing
the cotrect lag length. Lutkepohl’s resuits indicate that the Bayesian Information Cri-
terion of Schwartz (1978) and the criterion of Hannan and Quinn (1979) are the most
accurate given a moderately large sample size. These decision criteria are applicable in
both 2 unijvariate and a multivariate lag selection problem, the multivariate being the
general case.

Hsiao {(1979) has developed a procedure to help overcome the overparameterization
problem, as well as allow for more realistic differing lag structures in each equation of
the system. Hsiao’s procedure uses the Final Prediction Error criterion of Akaike (1971),
though any of a number of available statistical rules could be used as the underlying
decision criterion in this procedure {see, Judge et al., 1985, p. 675). Though Hsiao’s
procedure is not without fault, it is a useful procedure for modelling restricted VARs' .
Fewer parameters in a VAR allows the remaining parameters to be estimated with more
degrees of freedom, hence more accurately. Hsiao’s method for reducing the number of
parameters to be estimated in a VAR is closer to the time series philosophy of allowing
the data to determine the model specification than the Bayesian procedure which forces
the modeller to choose a prior to impose’®.

Another reason given for the poor performance of VAR representations of ¢conomic
time series is the lack of attention given to data issues inherent in time series econo-

o
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metrics. For exampie, if the time series to be modelled contains a deterministic trend or
a unit root, or if the variance of the series is not constant throughout, the series is said
to be non-stationary, Many economic time series, especially macroeconomic time series,
are in fact non-stationary in their levels (Wasserfallen, 1986; Neison and Plosser, 1982).
Because multiple time series theory relys on stationarity for its validity, the modelling
of nonstationary series as if they were stationary will produce undesireable results, one
of which can be poor forecasting performance. Dickey et al. (1986), show that, for
univariate models, forecasts from a nonstationary model do not decay to the sample
mean as the forecast horizon increases, and the forecast standard errors will diverge to
+ o instead of converging to the series’ standard deviation, This divergence of the fore-
cast-error variance should be reflected in the forecast variance component of the RMSE
of the forecasts from nonstationary models. At longer horizons, then, increasingly poorer
forecasts from nonstationary models should be observed relative to stationary models.

Another undesireable result is the appearance of spurious relationships when non-
stationary variables are regressed on each other (Granger and Newbold, 1974, 1986). This
is a problem that is now gaining long overdue recognition. Phillips (1986) has demon-
strated, using large-sample theory, that when non-stationary series are regressed upon one
another the t-tests of significance are biased toward rejecting the null hipothesis of
no relationship. In related work, Phillips and Durlauf (1986} demonstrate that the
asymptotic theory for non-stationary multiple time series departs significantly from
classical theory. In the case of non-stationary series, that asymptotic distribution of the
usual test criteria is nuisance parameter dependent, meaning that classical test statistic
distributions are no longer applicable.

A third consideration is that when sets of random variables are being modelled, as
in a VAR, attention must be paid not only to the stationarity of individual variables but
to possible equilibrium relationships among the variables. These equilibrium relationships
are manifest when two or more non-stationary variables have a linear combination that
is stationary. Such economic varigbles are then said to be co-integrated. The consequences
of ignoring co-integration include a loss in forecasting efficiency as important prior
information will not be included in the model specification. In fact, when co-integration
is present, the usual VAR representation is inappropriate (Engle and Granger, 1987).

The importance of these data issues makes it necessary to have a strategy for in.
vestigating the time series properties of the variables to be modelled before a particular
model is chosen. On the basis of these time series properties, appropriate forecasting
meodels, in our case possibly bivariate commodity price-cxchange rate models, can be
specified,

II. Stationarity and cointegration
The univariate case

It is well known in the time series literature that the time series being modelled must
be stationary for there to be a linear model representation {see, Wold, 1954; Judge ez al,,
1985). Stationarity recuires that then mean and variance of the series be finite and time
invariant and that the covariance between any two values of the process depend solely
on the distance between these values in time and not on time itself.

Unfortunately, the levels of many economic time series appear to be nonstationary
{(Nelson and Plosser, 1982; Nelson and Kang, 1984). Hence, in order to apply linear
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models such as ARMA models, a time series must be tested for and possibly transformed
to stationary. A useful starting point is to examine a time plot of the raw data series. If
the series exhibits fluctuations that are more violent for a particular segment of the series
than for others, the series very likely is variance nonstationary, Le., there is not a constant
yariance throughout the series, The most common methed for inducing variance sta-
tionarity in a series is to take the natural logarithm of each observation. This transfor-
mation will reduce the swings of the levels which constitute the variance nonstationarity
and often yields a series that is a good approximation to one having constant variance.

A more insidious form of nonstationarity, however, is nonstationarity in the mean
of a series. In this case, the series shows no propensity to return to, or move around, a
particular fixed level, When a series has this lack of affinity for 2 mean, and the move-
ment seeems to be in a particular direction, the series is often said to exhibit a “trend”.
In this paper, “trend” will be reserved for a deterministic functional dependence on time.
For example, consider a series that has two parts, a deterministic linear trend and a
residual representing the stationarity component which includes all of the interesting
variation that we wish 1o model:

Xi=oa+pf+e ‘ 2.1)

Often, (2.1) is estimated as a linear regression model, and the residuals are then treated
as a stationarity series that has well-defined variance, covariances, and autocorrelations
(Nelson, 1984). This would mean that €, could be modelled as an ARMA process after
trend was removed from X, The function need not be linear, however, which leads to
the more general representation:

X;=f()+ ¢ (2.2)

The relation in {2.2) is called a trend stationarity process (TSP); X, is stationarity around
the trend function f{t). It is important to note that this is just one hypothesis concerning
the manifestation of nonstationarity, and indeed there are problems with this particular
hypothesis. Even if we could know & priori that the variable X is a TSP, there is little
chance that the actual functional form could ever be accurately specified. If the non-
stationarity is not correctly modelled, the residuals in (2.2) will not be stationarity. In
addition, over the course of a time series, we may observe local upward trends followed
by local downward trends. Thus, a global OLS trend would not be an accurate repre-
sentation of the nonstationarity.

An alternative hypothesis about the way nonstationarity in mean arises was in-
troduced by Box and Jenkins (1970). They view nonstationarity not as a manifestation
of deterministic functions of time, but as the accumulation of random shocks. In this
case, the first differences of the series are stationarity, This kind of process takes the
form:

X=Xy +D+e 2.3)

Where ¢; is a stationary series with zero mean and constant finite variance and D is the
fixed mean of the first differences, often called the drift parameter'®. The levet of the
series at any given time t is equal to the previous level of the series, plus the drift, plus
the random shock. The seres is cumulative, or additive, in its level. This additivity ex-
hibits itself as an apparent “trend”. Equation (2.3) is said to belong to the difference
stationary class of processes (DSP).
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DSPs are also called “integrated™ processes, the word “‘integrated” reflecting the
additive nature of the series. The following three definitions will be useful in following
sections (from Granger, 1986; p. 216).

Definition 2,1a. If a time series Z; needs no differencing to become stationary, it is called
integrated of order zero which is denoted Z, ~ I(0).

Defiition 2,1b. If a time series Z, must be differenced d times to become [(0), it is called
integrated of order d which is denoted Z; ~ (d),

Definition 2.1c. Let AY represent b applications of the difference operator. If Z, ~ I(d)
then the b differenced series is AYZ, ~ J(d~b).

Dickey (1975), Fuller (1976), and Dickey and Fuller (1979, 1981) have developed
a series of tests (henceforth DF tests) for discriminating between the hypothesis that a
series is a TSP and the hipothesis that it is a DSP. Their tests only entertain a DSP that
is integrated of order one, The procedure is to perform OLS on the model:

M.nILQ..T g...fb&ﬂnln .+.m~ AN.AQ

‘

The null hypothesis for the first test, 7, is that p = 1, or that X, contains a unit root and
is non-stationary, with an alternative model that the series is generated by a stationary
autoregression (p < 1) with drift. The null hypothesis for the second test, 1., is again that
p = 1, with drift in the null model and an alternative model that the series is generated by
stationary autoregression around a linear time trend (drift plus a time parameter). Fuller
(1976, p. 373) has tabulated critical values for %, and 7., both of which are “‘t-ratios’,
(p = 1)/op, that follow nonstandard distributions, The rejection regions are given by
small values of 7, or 7..

Dickey and Fuller also describe two likelihood ratio tests for the joint null hypothe-
sis of a simple random walk. In the first of these tests, ¥, the null hypothesis is (@, p) =
(0,1) in a model that is assumed not to include a time parameter. In the second test,
w,, the null hypothesis is (; §, p) = (0, 0, 1) in a model that may have a linear time
trend. Finally, Dickey and Fuller describe a likelihood ratio test for the joint null hypo-
thesis of a random walk with drift (&, B, p) = (&, 0, 1) in a model that again includesa
time parameter. The rejection regions are for large values of the test statistics, and critical
values are found in Dickey and Fuller (1981, p. 1069).

A question that arises with the DF test is whether it is appropriate to model X; as
AR(1) or 3 random walk, as the error, &, in (2.4) may not be empirical white noise. For
example, if there is evidence of moving average behavior, a higher order autoregression
may be needed to approximate the dynamics of the X; process. Consequently, a more
general model is often fit. This results in an augmented Dickey-Fuller test (ADF) based
on the model:

o
X=a+pttpXKea + MWP.P*T. + e 2:5)
i=

where lags of AX;, are added until ¢; is white noise. The hypotheses to be tested about
the properties of the series are the same for this specification as for modet (2.4). Fuller
(1976) and Dickey and Fuller (1981) show that their tests also apply to these higher
order autoregressions.
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The multivariate case

Linear vector time series models, such as VARs, are only applicable to stationary
vector time series (Judge et al., 1985). A vector time series X; = (X1, Xatr ..o Xir ) i
stationary when each series is individually stationary in mean and variance. In addition,
all covariances, whether intraseries (an autocovariance) or interseries (across every pair of
the m variables in the vector process) must be independent of t and depend only on the
time displacement between observations. -

As discussed above, there is reason to believe that many economic time series are
nonstationary. Hence, the practitioner is faced with the problem of how to apply the
theory of vector linear models to nonstationary time series. Extrapolating from the uni-
variate case, a practical solution would seem to be examine the univariate time series
properties of each series in the vector to be modelled and use appropriate transformations
to reduce each individual series to stationarity. Such an approach is advocated in some
articles on VAR modelling (e.g., Hsiao, 1979). Hsiao logged and differenced each series
in the bivariate money-income relationship before proceeeding with specifying a VAR.
However, differencing of the individual series has been criticized by others (e.g., Taio and
Box, 1981; Lutkephol, 1982). The difficulty noted is that while each individual series
may be nonstationary, “for vector time series, linear combinations of the components of
[X¢] may often be stationary, and simultaneous differencing of all series can lead to un-
necessary complications in model fitting” (Taio and Box, 1981, p. 804). This phenome-
non of linear combinations of nonstationary series being stationary has been termed co-
integration (Granger, 1980; Granger and Weiss, 1983; Engle and Granger, 1986; Engle
and Yoo, 1987). Essentially, if there exist linear combinations of the individual non-
stationary series that are stationary, differencing each series individually will result in
a system that is overdifferenced. If this is the case, the system will no longer have a multj-
variate linear time series representation with an invertible moving average. Intuitively, if
a system is co-integrated, estimating a medel in differences ignoves the equilibrium
relationships among the nonstationary variables that contain important information,
Modelling the co-integration restrictions, then, should help a2 model produce forecasts
that are morse accurate than a model in which the restrictions are ignored (Engle and
Yoo, 1987).

For integrated processes of order greater than zero (le., nonstationary series) the
use of statistical techniques which assume stationarity can give incorrect results in the
multivariate case as well as in the univariate case. To illustrate the issues envolved, con-
sider the static regression:

u\n"QnT_n-.Nu:fmh AN.QV

where &’ is a vector of coefficients and X/ is a vector of regressors. Suppose that ¥, and
the X{s are each ~ J(1). Rearranging (2.6):

€= *~19|m¥5 AN.QV

In general the linear combination in (2.7) will yield e, ~ I{1) because e is a linear com-
bination of I(1) series. Hence the residuals will be nonstationary™. Phillips (1986), and
Phillips and Durlauf (1986) investigate the effect of using integrated processes, in static
multivariate regressions such as (2.6), and in multiple time series regressions such as
VARs. They conclude, using large sample asymptotics, that the distributions associated

kol
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with the usual inferential statistics do not follow the same distributions that they would
under stationarity. For the case of static multiple regression, Phillips proves that the
coefficients of the regression do not converge in probability to constants as the sample
size goes to infinity, as is the case when the variables are stationary; that is, the variables
have no limiting distribution (Phillips, 1986a; Banerjee et al., 1986). Phillips also shows
that the distributions of the t-ratios diverge as the sample size goes to infinity, This means
that no asymptotically correct critical values exist for conventional significance tests.
For critical values from conventional asymptotics, the rejection rate for the null hypo-
thesis will increase with sample size (Phillips, 1986; p. 318). These results confirm the
monte carlo evidence in Granger and Newbold (1974, 1986). The bias toward wrongly
rejecting is their concept of spurious regressions'®. Granger and Newbold illustrate the
problem by regressing independent random walks on one another. They note that using
the usual t-test (designed under the maintained hypothesis that the variables involved
are stationary) at five-percent level of significance will, on azverage, lead to wrongly
rejecting the null hypothesis three-fourths of the time. Where the number of independent
variables is greater than one, Granger and Newbold (1974) report a bias in F-tests toward
wrongly rejecting the joint null that all coefficients are zero from 76 percent to 96
percent of the time, with the rejection rate increasing with the number of included
variables®® .

Dynamic multivariate time series regressions with integrated processes, as opposed
to static regressions, are investigated by Phyllips and Durlauf (1986). They find that
OLS does provide consistent estimates of the regression coefficients in this case. How-
ever, these estimates are not asymptotically normally distributed. An important result
is that the limiting covariance matrices for the estimated coefficients have distributions
that depend on the number of variables in the system. These nuisance parameter de-
pendencies invalidate the usual classical significance tests. New statistical tests must
therefore be devised which are free of nuisance parameter dependencies.

Thus, nonstationarity in a multivariate regression, such as a VAR, can cause serious
problems for statistical inference. In order to avoid being fooled by spuriousrelationships,
making invali¢ conclusions based on the application of the wrong asymptotic theory, or
generating poor forecasts, one must insure that the series involved are stationary.

Co-integration and its implications

In a static multivariate regression, finding an ARIMA representation for the residuals
andfor differencing the included variables should eliminate the occurance of invalid
conclusions on the basis of classical inferential techniques. For time series regressions
with integrated processes, consideration of co-integration plays a vital role in deciding
what to do about nonstationatity.

Consider again a regressin relationship such as (2.6} in which each variable is I(1) and
we asume, for illustration, that there is only one regressor. We would expect that the
tesiduals in this series would be I(1) as they are a linear combination of I(1) variables.
However, in the special case where there exists a unique constant, say, y, such that the
two I(1) series have a unique linear combination:

y=Yy—a-yiA; (2.8)

that is stationary (more precisely z, ~ f(0)). In this case, X, and ¥, are co-integrated,
with co-integrating constant ¥'7. In the two variable case, y will be unique. For vectors
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of more than two time series there may be multiple vectors of co-integrating constants
and co-integrating relationships among the variables may not be unique {see, Engle and
Granger, 1987).

The intuition behind co-integration is that some economic variables move together
thorough time, bence the co-integration relationship can be thought of as an equilibrium
relationship. It says that two (or more) variables which have unbounded variance and no
constant mean, have a linear combination that has finite variance and a constant mean.
Consequently, the variable z, in (2.8) can be said to measure departures from long-run
equilibrium between the two series. Granger (1986) cites prices and wages, the money
supply and prices, government income and expenditure (perhaps only at the state or local
level), and the imports and exports of a country as pairs of variables that may be co-
integrated,

Tt makes sense that we should test economic variables for cointegration relationships
and then make use of the resulting information in model specification, Engle and Granger
(1987) have proposed tests of the null hypothesis of no co-integration against the alterna-
tive of co-integration, The tests are based on the residual in (2.8) being I(0) if the series
are co-integrated!®. That we are interested in whether the errors are I(0) or I(1) suggests
DF and ADF tests be applied to the residuals obtained by estimating this ‘“co-integrating
regression”,

¥ However, the co-integrating regression yields both an estimate of the co-integrating
parameter, J, and the residual series, 2,'%_ Since Z; can be obtained only after first obtain-
ing ¥, it has a dependency on the estimate of the co-integrating parameter. In :ﬁ. unit
root test on the 2, series from the co-integrating regression, the large sample behavior of
the “t-statistic” has nuisance parameter dependencies which stem from this dependency.
These are manifest as a dependency of the “t-statistic”” on the number of variables in the
co-integrating regression (Engle and Yoo, 1987). The critical values in Fuller (1976) and
in Dickey and Fuller (1981) used for the usual DF and ADF unit root tests do not apply
for the co-ntegration test because they do not account for these nuisance parameter
dependencies. New critical values, dependent on the number of variables in the vector
time series, are provided in tables in Engle and Yoo (1987)%.

If the test for co-integration is unable to reject the null hypothesis of no cointegra-
tion the appropriate model is one in first differences, as each of the variables are I(1) and
they have no linear combination(s) that are I(0). If co-integration is found, a model is
needed that includes this information, Granger (1982) and Engle and Granger (1987)

prove that a bivariate co-integrated system has an error-correction model representation®® :

AX, =¥z, , + ofBJAX, + B{B)AY, + €11 (2.9a)
AY, = 211 + WBYAX, + S(BAY, + €2 (2.95)

with {£;| + l£2] # 0. The co-integration is captured in (2 .9) uniquely through the 7, |
term which is obtained from the cointegrating regression. This representation captures the
co-integration in terms of the levels of the co-integrated variables (Engle and Granger,
1987). The levels enter the equation aslast period’s departure from long-run equilibrium.
Specifying a VAR in differences, if the variables are co-integrated, can be thought o.m asa
specification error because the error correcting terms (—&,2z,.; and —§;2,.;) are incor-
rectly excluded from the equations.

The model selection process, then, is a process that, to a large degree, depends on the
information we can extract from the data concerning its time series properties. In the

:
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following section, we consider the data amalysis techniques discussed above to help in
specifying univariate models for forecasting agricuitural commodity prices and bivariate
models with prices and exchange rates. The models suggested by the data analysis will
then be compared to various popular time series specifications to see whether these
techniques make a difference by providing better forecasts.

HI. Forecasting models for agricuitural prices
Data description

The price data used herein are average monthly cash prices of NO 1 Hard Red Winter
Wheat at Kansas City, NO 2 Yellow Corn at Chicago, and N© 1 Yellow Soybeans at the
Ittinois Processor, deflated by the U.S. CPL The CPI was taken from various issues of the
Survey of Current Business. The price data were obtained from the Crops Section of the
USDA, and run from January, 1974 through August, 1987, A post-1973 sample period
was chosen so that exchange rate effects would be observed only over the period of flexible
market-determined rates.

The exchange rate data includes the crop-specific real trade-weighted exchange rates
for wheat, corn and soybean exports calculated by the Demand and Trade Section of
the USDA. The overall index is calculated as follows: The weights for the indices are
average value shares of U.S. commercial exports from 1976-78, The current real exchange
rate for each country is computed by taking the ratio of the same period CPIin the U.S,
to that of the country in question and multiplying by the period average spot rate. The
percent change from the base value is then multiplied by the weight. These weighted
changes are then summed into a total which is the real index.

Analysis of the data and tests for unit roots

After an examination of the time plots we conclude that each series should be
expressed in natural logarithms to compensate for an apparently nonstationary variance®
The time plots of the individual series also indicated possible nonstationarity in mean.
Estimates of the autocorrelations and partial autocorrelations of each series provide a
useful starting point for evaluating this nonstationarity and are reported in table 122, In
each case, the autocorrelations are large at low lags and decay quite slowly, Autocorrela-
tions at lag 24 are all significant. By comparison, the autocorrelations and partial autocor-
relations calculated for the first differences of the series (reported in table 2), decay
quickly to insignificance by at most the fifth lag, We therefore can be reasonably con-
fident that none of the series contains mozse than one unit root.

The autocorrelations are also useful for detecting seasomality, Large, significant,
autocorrelations will show up at the seasonal lags (called seasonal spikes) if seasonal
pattetns are indicated. There is no such behavior indicated in table 1, however, nonsta-
tionarity can often mask seasonal spikes in the autocorrelations. Ar inspection of the
autocorrelations of the first differences of each series indicates very slight evidence for
seasonality in the case of the corn price only. The seasonal spike at lag 12, however, is
barely significant. In addition, there is no evidence of a seasonal spike at the second
seasonal lag, 24, which leads us to conclude that there is not sufficient evidence to
warrant a seasonal transformation.



TABLE 1

01

ESTIMATED AUTOCORRELATIONS AND PARTIAL AUTOCORRELATIONS ON LOGGED DATA, LAGS 1-24, 1974: 1-1987: ]

Wheat Com Soybean Wheat Corn Soybean
Price Price Price Ex. Rate Ex. Rate Ex. Rate
lag ACF PACF ACF PACF ACF PACF ACF PACF ACF PACF ACF  PACF

1 .95 95 96 96 97 97 99 99 .99 99 99 59

2 90 -.14 91 —-.13 52 -322 .98 -20 97 -.24 57 24

3 85 10 .87 04 .87 00 96 —13 96 -07 96 -.06

4 82 14 83 07 .83 12 95 -02 94 —09 94 -—.10

5 80 03 80 -4 .79 o0 93 ~.02 92 .00 91 -0

[ a1 ~.04 .76 .05 76 01 92 -.06 .90 -.05 89 07
7 74 01 3! -.07 73 -06 90 04 .87 -.02 87 03 -
8 T 03 67 01 a0 03 88 -01 85 ~.04 84 -.03 g
9 69 -02 64 06 67 00 86 -06 82 —04 82 -05 =
10 66 -10 .60 -03 63 -11 85 .09 . .80 01 49 01 5
11 62 -.03 57 -.07 59 .01 .83 —-.01 11 -09 76 —08 -
12 .58 —.05 52 —.07 56 -.01 .81 .10 75 —.06 a3 -02 tx
13 54 04 48 00 53 02 20 -0 2 07 20 —05 [
14 ST 03 45 03 .50 19 78 -1 69 -.05 67 .04 &
15 48 05 42 A1 A9 02 a1 -07 66 -.08 64 -.10 1z
16 46 07 40 02 A48 07 as 04 62 —-11 61 —.11 ]
17 44 05 .38 03 47 06 a3 —.06 58 -.02 57 -—04 a
18 43 03 36 00 47 06 a1 02 55 12 53 1 S
19 41 —04 35 -02 47 -02 69 -.03 51 —-.06 50 -.05 g
20 .38 -.08 33 -.05 A6 -0 67 -.13 A8 .15 A7 15 =
21 35 -02 31 -00 45 -00 65 02 45 03 44 03 =]
22 .32 -.03 29 0t 44 —-.08 63 —08 42 -07 41 .09 <
23 .30 00 .27 -.05 43 .04 £0 —.08 .39 -02 37 —04 g
24 .28 -01 .25 -.02 42 .04 58 —~.10 .37 -1 34 -0 w
z
Estimates are based on full sample from 1974: 1 to 1987: 8. Standard erzors are approximately 1.96/SQRT (167) =1 0.15; where 167 is sample size. ,3

TABLE 2

ESTIMATED AUTOCORRELATIONS AND PARTIAL AUTOCORRELATIONS ON FIRST DIFFERENCES OF LOGGED DATA,
LAGS 1-24,1974: 1-1987: 8

ALVY SONVHOXA 904 STIAON STNYIS TNEL

Wheat Comn Soybean Wheat Com Soybean
Price Price Price Ex. Rate Ex. Rate Ex. Rate

Lag ACF - PACF ACF PACF ACF PACF ACF PACF ACF PACF ACF  PACF
2 -.09 -.27 07 -.13 05 =10 .20 14 12 05 A1 04
3 -.17 -.04 -.20 -.22 -.18 -.19 13 06 12 09 13 10
4 -.07 .00 -.18 01 -.18 -.05 6 -.01 06 .00 .07 .01
5 -.05 -.38 -.04 06 -.12 -.04 -.03 -.07 08 .05 09 .06
[ -11 -.11 -06 -15 -.11 -.11 -0t -.01 04 —-.00 06 .01
7 -19 —.14 -11 -1 -09 —.06 -.01 01 .05 03 .04 01
8 -.06 .04 -.21 -.13 -.02 -01 —-.01 00 09 07 .09 .07
9 .05 w02 -12 01 .08 .05 .01 02 02 -.04 03 03
10 A5 .10 07 09 .06 -.05 -,07 —.08 07 .06 07 .06
11 13 03 20 07 03 -.02 07 .10 09 .04 06 01
12 13 11 22 06 «.01 —.01 09 .08 10 .06 01 .05
13 04 —.03 07 -.03 -11 -12 10 06 a1 .06 09 .04
14 .01 .04 -.09 -.09 —.14 -09 06 Rili} .14 08 .13 10
15 —-07 -.06 -.16 —-.06 -.14 -.07 04 -.03 13 05 12 05
16 -.07 03 —.06 .05 -.09 —.06 03 01 .08 00 10 .03
17 —-.04 01 -.04 -08 -.10 .14 -06 —-07 -.10 -17 -08 -.17
18 03 06 -.04 -02 -.03 -.05 02 05 93 06 02 .04
19 12 15 -.04 05 -.01 -.08 -.01 00 -12 -.18 -13 -19
20 07 —.04 -03 01 10 .03 -.02 -03 -.09 -.03 -10 -03
21 -.05 --.06 .02 —-.02 13 01 A3 A7 04 .06 05 .08
22 -12 .10 07 -.01 07 ~.05 .08 03 00 -.00 02 .0t
23 —.05 0 06 -.04 —-.04 -.08 04 -.02 .04 .03 .03 04
24 0t —.04 -03 -.09 =11 -09 .09 04 -.01 -.04 -00 -.04

$01

Estimates are based on full sample from 1974: 1 to 1987: 8. Standard errors of the estimates are 1.96/SQRT {166) = £ 0.15; where 167 is sample size.
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As the autocorrelations of the series to be modelled indicate possible nonstationarity,
DF znd ADF tests for unit roots are conducted as outlined above. In every case, the
simple DF regression, which contains no lags of the dependent variable, shows signs of
serial correlation in the residuals according to the Ljung-Box Q-Statistic (see Ljung and
Box, 1978)*. To remedy this lack of fit, higher order autoregressions were estimated.
For the wheat price and the wheat exchange rate a two-lag model proves sufficient to
climinate serial correlation of the errors. In the other cases, a one-lag model appears
sufficient.

The results of unit 100t tests are summarized in table 3. There is convincing evidence
of the presence of unit roots in the levels of each of the variables we consider. The
evidence for the presence of unit roots is most conclusive for the wheat price and each of
the exchange rates. In these four cases, none of the test statistics is rejected, and we there-
fore conclude that each contains a unit root.

TABLE 3

VALUES OF TEST STATISTICS IN DICKEY-FULLER UNIT ROOT TESTS, 1974: 1-1985: 4

Test © Wheat Comn Soybean Wheat Corn Soybean
Statistic Price (2} Price (1) Price (1) Ex Rate (2) Ex. Rate (1) Ex. Rate (1)
T -2.28 -2.30 ~2.38¢ 1.13 -.002 -.09

Te -2.81 —3.25¢ ~4,33¢ -57 1.41 ~1.45
P, 3.39 3.21 3.15 1.65 43 A0
@, 3.17 4.08 6.14b 3.73 2.08 2.08
by 4.30 5.58¢ 9.364 4.50 2.62 271

Note: The number in parentheses beside gach variable name indicates the number of Iags of Ax; in the
Dickey-Fuller regression. Critical values of the test statistics are from Fuller (197 6,p. 373}, and
Dickey and Fuller (1981, p. 1063). .

a4 Reject at 1-percent significance level.
b Reject at 5-percent significance level,
£ Reject at 10-percent significance level.

For the com price, the value of the test statistic, 7, suggests that we do not reject
the null hypothesis of a unit root. The statistic, 71 , provides further evidence of a unit
root, though at a smaller levet of confidence. The statistic &, for the joint-null hypo-
thesis that (&,p)=(0,1) is not rejected and the statistic & , for the joint-nuil (afp) =
(0,0,1) is also not rejected. Lastly, the joint test for the null (,8,0)=(,0,1) is rejected at
the 10-percent level, though this does not provide strong counter-evidence. We therefore
conclude that the corn price is nonstationary as a result of the presence of a unit root.

The unit root tests on the soybean price are less conclusive. The first “t-ratio™ test
for the null of a unit root, Ty, is rejected at the 10-percent level. The test statisfic, 74,is
rejected at the 1-percent level. The joint tests, however, are inconclusive. The statistic, @, ,
with a null of (&, p)=(0,1) is not rejected. The test of (a,8,0)=(0,0,1), @, , is rejected at
the 5-percent level. Finally, the test of (0,8,0)=(2,0,1), &3, is rejected at the 1-percent
level. It is critical to remember that a rejection of the joint-null which includes a restric-
tion that p = 1 does not necessarily imply that we are rejecting that particular restriction.
To sort out the conflicting evidence concerning soybean price we consider comparisons of
the empirical power of the unit root tests. Dickey and Fuller {1981) rank the tests, denot-
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ed by their corresponding statistics, on the basis of their power as follows: ¢ > 3>,
and & 3 >7 .. For soybean price, the more powerful test provides an indication that we
should not reject the null of a unit root, and consequently that will be our conclusion® .

The unit root tests imply that for each of the series we considered the nonstationary
behavior is a result of the presence of a unit root. However,there is ambiguity as to the
presence of a drift parameters in the specifications. We therefore test the significance of
the drift term in an autoregression of each differenced series?® . For the wheat price there
is marginal evidence for inclusion of a drift term. The t-statistic is 1.69, so the null
hypothesis that the constant is zero can be rejected at the 10-percent level. For the other
agricuitural prices and the exchange rates, the constant is not significant in any of the
equations, even at the 10-percent level.

The next step in our data analysis was to test for co-integration between the series in
the bivariate relationships we wish to model. Each of the exchange rates are regressed on
their commodity price counterparts. The residuals from these regressions are then tested
for unit roots against the tables in Engle and Yoo (1987).

The results for the co-integration tests are found in table 4. The first row of table 4
displays the t-ratios for the simple DF test for co-integration. Rows 2 through 6 display
t-ratios for the ADF tests for co-integration with the indicated number of lags. According
to the Q-statistic serial correlation is removed with one additional lag of the residuals. We
entertain higher lags because, for the wheat case, the test results change for higher order
autoregressions unlike the stationarity tests where higher order autoregressions provided
results that were consistent with those in table 3, The nuil hypothesis of no co-integration
is rejected for the relationship of wheat price and the wheat exchange rate at the Spercent
level by the DF test and the ADF test ar lag I only. (in this case adding a second lag to
the ADF regression reduces the value of the test statistic by 35-percent). In all other
cases, we do not reject the null of no co-integration.

If the wheat price is co-integrated with the wheat exchange rate, a reverse of the co-
integrating regression, with the exchange rate as the dependent variable, should also yield
residuals that are I{0) providing a check on the robustness of the initial results. For the

TABLE 4
TEST STATISTICS FROM DF AND ADF TESTS FOR CO-INTEGRATION, 1974: 1-1987: 8

What Price/Wheat Corn Price/Corn Soybean Price/Soybean
Test Ex. Rate System Ex. Rate System Ex Rate System
Dickey-Fuller
t5 -3.53% —-.209 -~1.41
Augmented DF
Llag -3.54¢ ~1.16 . -2.16
2-lag -2.61 —741 -1.88
3ag -1.87 —-.059 1.03
4-lag -1.61 -.317 -131
5-lag -2.16 —.760 1.19

Note: Critical values are interpolated from Engle and Yoo (1987) for sample size of 167.
4 Reject null of no co-integration at S-percent significance level.
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wheat price-wheat exchange rate relationship, however, this does not hold true. A co-inte-
gration ADF test on the residuals from the reverse regression is unable to reject the nuil
of no co-ntegration for any lag length. This casts considerable doubt on the initial ADF
test results.

Based on the DF tests and the cointegration test results, we maintain that the correct
time series specifications are in differences. Nevertheless, for the sake of comparison, we
will estimate an error-correction model for the wheat price-exchange rate system.

Estimation and evaluation of forecasting models

The experiments we conduct are to compare forecasts from univariate ad multiva-
riate models chosen on the basis of unit root, drift, and cointegration tests to results from
other models. In order to abstract from the issue of how lag lenght selection can determi-
ne the accuracy of forecasts (see Lutkepohl 1985} and concentrate on the issue of how
ignoring the time series properties of the data can impinge on the forecasting accuracy of
the estimated models, we apply two lag length selection criteria to each of the models in
the experiment. We have chosen the Bayesian Information Criterion of Schwartz (1978),
denoted by “BIC™, and the criterion of Hannan and Quinn (1979), denoted “HQ.”” We do
not claim that cither criteria will select the “best” forecasting model. We are only hoping
to select univariate and multivariate models in a consistent manner, so that the resulting
specifications can bé compared to each other on criteria other than lag lenght. We
compare the relative gain or loss in forecasting accuracy 2s measured by root mean
square error (RMSE) at different forecast horizons. For each of the commodity prices and
each exchange rate we estimate a univariate model in differences (UD) with and without

TABLE 5

LAG LENGTHS CHOSEN BY BIC AND HQ CRITERION FOR VARIOUS FORECASTING
MODEL SPECIFICATIONS, 1974-1985: 4

Unvariate Autoregression

Wheat Com Saybean Wheat Corn Soybean
Model Price Price Price Ex. Rate Ex. Rate Ex. Rate
UL 6 2 2 2 2 2
UD 5 134 1(6)4 1 1 1

Vector Autoregressions

Wheat Corn Soybean
Price/ Price/ Price/
Model Wheat Ex. Rate Corn Ex, Rate Soybean Ex. Rate
VARL 2(3)4 2 2
VARD 234 1 1
ECM 1(2)8 NA NA

Note: See text for descriptions of the alternative models.

4 For cases in which criterion do not select the same specification the lag length chosen by BIC is
given first with that chosen by HQ in parentheses.

§
i
A
)
i

et L

o L il el

TIME SERIES MODELS FOR EXCHANGE RATE 109

a constant, and a univariate model in levels with a trend (UL} In addition, for each
bivariate commodity price-exchange system we estimate a VAR in differences (VARD),
and 2 VAR in levels with a trend in each equation (VARL)? . For the wheat case, we also
estimate an error correction model (ECM) and a VAR that includes a constant in the
price equation but not in the exchange rate equation (SUR); this mode] is estimated by
seemingly unrelated regressions.

Table § shows the lag lengths selected by the criteria we have chosen for ¢ach of the
models indicated. The BIC and HQ criteria agree on lag length in 10 of the 12 univariate
models, and 2 of the 3 bivariate systems. Where the two criteria disagree on lag lenght we
report RMSEs for these models based on the best out-of-sample forecasts in a competi-
tion between the BIC and HQ determined models.

The models are estimated based on the sample period 1974-1985:4, the starting
month in 1974 depending on the lag lenght for a particular model. A post-sample period
of 28 observations from 1985:5-1987:8 was held out to calculate RMSEs. All reported
RMSEs are calculated based on forecasts of the log-levels.

Table 6 shows RMSEs calculated over the horizons §, 2,3, 6, 12, 13, and 18 foreach
of the models forecasting the commodity prices. The first set of comparisons is between
price forecasts from UL models and the UD models consistent with our specification tests
(i.e., with drift in the wheat price autoregression, and without drift in the case of corn
and soybeans). On the basis of the gainfloss in accuracy from using the UD models
instead of the UL models, we observe that in all but 3 of 21 cases, the difference specif-
ication dominates. At short horizons, (1,2,3), the gain in accuracy ranges from 4.2-percent
for forecasts of the corn price at the l.step horizon, to again in accuracy of 46-percent for
soybean price at the 3-step horizon. At longer horizons most of the gains are even larger.
For forgcasts of the wheat price at horizons 12, 15, and 18, the gains in forecast accuracy
from using the UD specification are 117-percent, and 142-percent respectively. Gains in
forecast aceuracy of 96-percent, Sd-percent, and 29-percent at horizons 12, 15, and 18
are realized for the soybean price as well. For the corn price the UD model without
constant is more accurate than the UL model at horizons through 12 months, but less
accurate at longer horizons,

Accuracy gains are also realized for forecasts of each exchange rate when the UD
models consistent with our specification tests (i.e., without drift} compete with the UL
models (see table 7). At low horizons, the percentage gains in forecast accuracy from
using the UD model instead of the UL model range from a low of 6-percent at the 1-step-
ahead forecast of the wheat exchange rate, to 61-percent at the 3-step forecast of the
corn exchange rate. At longer horizons, the gains are consistently above 50-percent rang-
ing to a high of 289-percent at the 18-step forecast of the wheat exchange rate,

One curious result from the univariate regressions conceras the impact of including
a drift term in the difference model. Qur specification tests provided only marginal
evidence for inclusion of a constant in the wheat price equation and rejected inclusion of
a constant in the other price equations and the three exchange rate equations. As expect-
ed, forecast accuracy of the UD model for wheat price is improved substantially by
nclusion of a drift term, especially at long forecast horizons. Forecast accuracy for comn
and soybean prices is also improved by inclusion of a constant in the UD mode. Inclusion
of a contant worsens forecast accuracy for the exchange rates (which is again consistent
with our specification tests).

Turning to the bivariate models, a comparison of the forecasts of the commodity
prices from the VARL and the VARD models corroborates the results from the univariate
model comparisons. The corn and soybean price VARD models without constant have

B B



TABLE 6

RMSEs OF FORECASTS OF WHEAT PRICE, CORN PRICE, AND SOYBEAN PRICE ALTERNATIVE FORECASTING MODELS,

1985:5-1987: 8

01y

Horizon Obs. VARL VARD ECM UL up
‘Wheat Price
SUR w/ Const wio Const w/ Const w/o Const
1 28 050 050 050 051 .207 053 051 052
2 27 .090 088 088 092 A4 096 089 093
3 26 118 14 114 122 251 127 113 121
6 23 146 141 155 155 1.55 .164 133 149
12 17 163 104 107 186 2.77 233 107 182
15 14 168 137 142 258 3.7 281 145 253
18 11 125 102 107 235 3.81 264 109 233
Corn Price w
P
w/{ Const wfo Const w/ Const w/o Const =
1 28 075 .070 070 074 067 071 ;
2 27 149 138 140 147 130 139 o
3 26 203 185 190 200 1717 188 B
6 23 286 231 245 280 220 238 ;
12 17 421 307 365 407 306 353 #
15 14 484 355 480 462 400 468 B
18 i1 493 401 458 467 403 484 a
Soybean Price g
w/ Const wfo Const w/ Const w/o Const %
1 28 .039 029 029 036 028 029 =
2 27 078 - 049 050 020 046 .050 8
3 26 112 069 070 . 102 064 070 =
6 23 160 084 086 149 073 086 3
12 17 .145 054 081 159 .048 081 o
15 14 135 062 107 165 D67 107 w
18 i1 119 087 122 159 .088 123 Z
(]
TABLE 7 §
RMSEs OF FORECASTS OF WHEAT EXCHANGE RATE, CORN EXCHANGE RATE, AND SOYBEAN EXCHANGE RATE :
ALTERNATIVE FORECASTING MODELS, 1985: 5-1987: 8 %
Horizon Obs. VARL VARD ECM UL uD E
Wheat Exchange Rate 8
2]
w/ Const w/o Const w/ Const w/o Const &
1 28 0.19 017 017 019 018 018 a
2 27 029 025 025 031 026 025 =
3 26 041 033 031 043 033 031 E
] 23 0713 059 054 082 058 053 o]
12 17 A17 082 071 135 083 0712 =
15 .14 138 083 065 159 .084 D68 E
18 11 150 077 045 179 078 046 g
=
Corn Exchange Rate E}
w/ Const wfo Const w/ Const wjo Const
1 28 022 020 019 025 .020 019
2 27 042 035 032 048 035 033
3 26 061 049 044 071 049 044
3 23 126 097 085 144 098 086
12 17 255 .188 163 .268 189 164
15 14 3t 233 201 323 2.33 202
18 11 .358 280 241 376 280 242
Soybean Exchange Rate
w/ Const w/o Const w/ Const wio Const
1 28 027 022 022 027 022 022
2 27 052 038 036 0s1 039 036
3 26 076 053 048 075 054 049
[ 23 154 104 074 152 196 085
12 17 285 202 129 284 250 180
15 14 342 .249 220 341 253 221
18 11 395 298 262 394 303 263
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lower forecast RMSEs than the corresponding VARL models in all but 1 of 14 cases.
Again, inclusion of a constant seems to improve the forecasts of the commodity prices
from the VARD models. For wheat price, including a constant in both equations of the
VAR substantially improves forecast accuracy, consistent with our specification test. Very
slight additional gains at the longer horizons are obtained by including the constant only
in the price equation (see SUR in table 6). The error comrection model performs very
poorly, confirming our suspicion of a type Ferror in the co-integration DF and l-lag ADF
tests.

A comparison of forecasts of the exchange rate from the VARL and VARD models
also suggests a gain in forecast accuracy from appropriately accounting for unit roots.
At every horizon, a gain in forecast accuracy is realized by using the difference specified
model instead of the model in levels with trend. The difference model without constant
forecasts better than the difference model with a constant for all three exchange rates,

The role of the exchange rate

To investigate the role of the exchange rate in forecasting commodity prices, we first
compare the forecasts of the wheat price from the VARL model with those from the UL
model. Interestingly, we observe lower RMSEs at all hozizons for the VARL model. The
exchange rate, when included in the model, improves the accuracy of the forecasts of the
wheat price by 6-percent at the 1-step horizon, 43-percent at the 12-step horizon, and 67-
percent and 111-percent, respectively, at the 15 and 18-step horizons, This result is
consistent with Bessler and Babula (1987); their models were estimated in levels as well.
Howevet, when we compare the UD model with the VARD model for wheat price, a
contrary result emerges. The VARD model for the wheat price shows no .ﬂ.oﬁmna.qmaw
superiority to the UD model with a constant. The UD model preferred by our %a.a_mnm.
tion tests (with constant) dominates the VAR model as well, providing further evidence
against the position that the exchange rate can help us forecast the wheat price. The ex-
change rate does not help to forecast the wheat price when account is taken of nonsta-
tionarity in the data.

Forecasts of soybean prices from the VARL model appear to corroborate the results
for forecasts of wheat prices from the levels specifications, again giving evidence that the
exchange rate matters in a forecasting context. At short to medium horizons, the UL
model dominates VARL, at longer horizons, however, the VARL forecasts improve rela-
tive to forecasts from the UL model, showing a 27-percent and 34-percent gain in accura-
cy at horizons 15 and 18, This outcome is again not observed in the difference-specified
models, The VARD models for the soybean price-exchange rate system do not outper-
form the UD models for the soybean price. Once again, the UD model bests the VARL
model in all but one case, while the UD model with a constant provides better forecasts in
all cases.

Finaily, for the corn price, we get no evidence of the exchange rate improving fore-
casts. The VARL provides somewhat less accurate forecasts than the UL, especially at
long horizons. The VARD models with and without constant perform about the same as
the corresponding UD models.

IV Summary and conclusions

The objectives of our paper have been to examine the appropriate .mmanﬁow:on of
forecasting models with respect to possible nonstationarity in time series data, and to
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investigate the effects of the exchange rate in forecasting agricultural prices. In particular,
we have been interested in the role of nonstationarity in evaluating whether incorporating
exchange rates in bivariate models with agricultural commodity prices improves price
forecasts compared to univariate models.

We find that when careful attention is paid to the unit root properties of the data,
better forecasting models can be constructed than when these propertiesare ignored. Our
specification tests suggested that each price and exchange rate series be modelled in dif-
ferences, with a constant only in the wheat price model. The UD models perform better
than the UL models for all three exchange rates and for the corn and the soybean prices,
whether a constant is included in the difference specification or not. For wheat prices,
forecasts from the UD model with a constant are much better than forecasts from either
the UL model or a difference model without a constant,

The results from the comparisons among univariate models are reinforced by
comparing the VARL models to the VARD models. Among forecasts of the exchange
rates and the commodity prices, the VARD models produced lower RMSEs than the
VARL models in 41 of 42 cases. Thus, both the comparisons among univariate and
bivariate models confirm the theoretical result that forecasts from nonstationary models
are sub-optimal. Our resuits argue for testing for nonstationarity and co-integration and
specifying models appropriately before estimating their parameters and making forecasts.

A further consequence of ignoring nonstationarity arises when we examine the role
of the exchange rate in forecasting agricultural prices. If we had only examined the
forecasting proficiency of the VARL and UL models, without recognizing the possibility
of unit roots, we likely would have concluded that inclusion of the exchange rate in a
bivariate model improves price forecasts. This conclusion, though it has been reported
in the literature, is suspect. In our analysis, forecasts from the VARL models for wheat
and soybean prices outperform UL models for these prices. But these VARE models
are beaten in out-of-sample forecasting performance by UD and VARD models. Further,
the YARD models do not impreve on forecasts from the UD models. This suggests that
when the information in the data is used efficiently, in this case by removing unit roots,
the exchange rate does not help to forecast prices.

The broad issue raised by our analysis concerns the implications of the result that
incorporating an exchange rate in bivariate models with wheat, corn or soybean prices
does not improve forecasts from univariate models. This result is perhaps not all that
surprising since arbitrage in competitive asset markets may lead prices themselves to
reflect ali that is known, at a given moment in time, about their own future. The failure
of the exchange rate to improve upon univariate price forecasts does not necesarily imply
that macroeconomic factors are unimportant to agriculture. We have touched only a small
piece of a complex problem. Our results suggest that macroeconomic shocks reflected in
exchange rates may affect agriculture] prices-other asset prices-simultaneously. To
uncover the macroeconomic impacts may require a more articulate identification of the
macroeconomic shocks than is conveyed simply by associating exchange rate shocks with
macroeconomics, and price shocks with agriculture in a reduced form model. This is a
more subtle result than concluding that macroeconomic phenomena matter to agriculture
because exchange rates improve agricultural price forecasts, when the latter result may
arise only from the failure to address nonstationarity in the data. Capturing macro-
economic impacts on agriculture in dynamic models with time series data remains a
challenging area of research.
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Notes

10

11

13

14
15

The Structural Econometric Modelling Time Series Analysis (SEMTSA) approach of Zeliner
(1979), and papers by Harvey (1981), Davidson et al. (1978}, and Hendry (1978) are examples of
work which emphasize the need for more synthesis, Blanchard and Watson ﬁww@..wo.ﬂsaa
(1986), Sims (1986) and Fackler (1988) have addressed the identification on.. dynamic simulta-
neous equation structural models and their relationship to multivariate time series models.

Hence the name ARIMA models. The “I"" in ARIMA designates that the tims series is modelled in
differences of the original series. This is done to induce stationarity, an important topic ta be
covered in detail below.

The backshift operator, also called the lag operator, performs the following operation, makﬁ
X, on either a single random variable o1 a vector of variables.

One way to test the general credibility of identification restrictions would be to conduct a mon.‘.\
casting experiment where the structural model competes with various specificatons of muitivaria-
te time series models. Zellner (1982) argues that structural models that have excellent in-sample
fit must still prove their ability to forecast well in order for them to be useful contributions to
eCONOmic science. .
Rick Ashley peints out that if the forecasts of such explanatory variables ate poor enough, it
may be unwise to include these variables in the forecasting model even if the theory supporting
their relevance is valid.

An example was presented in Nelson (1972) where it was demonstrated that a univariate ARIMA
madel could out-forecast the Federal Reserve-MIT-Penn quarterly model of the U.S. economy.
See also Cooper (1972).

Bessler and Babuila use a decomposition of forecast emor variance to isolate the effect of the
exchange rate on the wheat price,

More generally, our study is pursuing the investigation of the effects of real exchange rates (and
other macroeconomic variables) on price and export-quantity forecasts. Bessler and Babula’s
resnlts are anomalous as we would expect that a change in a real commodity price would be as-
sociated with a change in exports of that commodity.

A prior is an informed belief that the modeller brings to the modelling exercise. The priors appear
in the form of probability distributions on the coefficients.

The random walk prior is justified for many macroeconomic and financial variables (e.g.. Nelson
and Plosser 1982).

Webb (1985) applies the Akaike Information Criterion (AIC) within his own procedure to the
choice of lag lenght in a VAR. He notes a consistent improvement in the forecasting accuracy of
his specification using the AIC over an unrestricted VAR,

Doan, Litterman, and Sims (1983) propose the quasi-Bayesian approach of using the data to
select an optimal prior.

The simplest member of this class of processes is the random walk where € would be a white
noise process (zero mean, finite variance and zero covariance between any two values separated in
time), and the drift would de zero.

For the case where Yy ~I(1) and X;~/(0) the residual in (2.7) will be I(1) as well.

Yule (1926) was the first to formally investigate this phenomenon, often called “‘spurious” or
“nonsense” correlations. Yule examined the correlations between unrelated series, When the
series were stationary, no correlation was observed, as expected. For I(1) series,.the correlation
distribution indicated a high degree of linear association, and for K(2) series the most often
encountered correlations were £ 1,

To underscore their results, Granger and Newbold work with statistically independent variables.
Howevet, the distributional results proved by Phillips (1986) also apply to correlated time series.
The crucial results are that the coefficients do not converge to constants and that the distribu-
tions of the test statistics diverge as the sample size increases to infinity.

In general, for any pair of series X; and Xz both ~ I(d), if there exists 4 linear combination
(2.7) such that z; ~ d-b) with b0, the pair are co-integrated of order ¢ — b, denoted (X,
Xap) ~ CHd.b).

Note that each individual series must have an order of integration equal to the other's for co-
integration to make sense. To insure this, one should use tests such as the DF and ADF as well a3
ACF and partial autocorrelation function plots of the raw and differenced series to determine
the order of integration of each individual series. If such a preliminary examination strongly
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indicates that the series have differing orders of integration, a formal co-integration test is un-
necessary.

Stock (1987) has shown that if ¥ and X} are cointegrated, OLS estimates of y are highly efficient
and super consistent; that is, as T P will converge to its true value twice as rapidly as would be
the case for 2 usual OLS parameter estimate in a similar, stationary, regression.

For the co-integration test, we can ignore the trend functions and the hypothesis becomes I(1}
vs. [{0) with the relevent statistic being the t-ratio on the parameter p.

Granger (1986) and Engle and Granger {1987) also discuss the error correction models for vectors
of more than two time series,

Henceforth when a price variable is referred to as “wheat price’” it should beunderstood that it

is the logarithm of the real wheat price, and similarly for other prices and the exchange rates.

The autocorrelations and partial autocorrelations found in tables 1 and 2 are calculated over the
entire sample period 1974: 1 to 1987: 8. The forecasting models will be calculated over a smatler
sample period, hence it might be argued that we should inspect these values instead. We use the
full sample so that we can assimilate the most information possible. Al} the results concerning
stationarity should be (and are) robust to this slight change in sample period.

The null hypothesis is no serial correlation, hence model adequacy is rejected for large values of
this statistic,

Schwert (1987) azgues that specifying the correct ARMA structure, and not just an autoregressive
approximation, is necessary to avoid possibly wrongly rejecting the null hypothesis of a unit root.
Stock and Watson (1987) also suggest checking the difference specifications for quadratic trends
as well, however, we follow Nelson and Plosser (1982) who take the position that for a log-dif-
ferenced series to have a deterministic trend would imply that rates of change are ever increasing
(B > 0) or ever decreasing (f < 0), a curious hypothesis for most economic variables, except,
perhaps, a controlled variable such as the money supply.

The motivation for including lineat trends in levels models is found in Sims (1980, p. 18).
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