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Absiract:

Vector Autoregressive (VAR) models which do not rely on a recursive model
structure are discussed, Linkages to traditional dynamic simultaneous equa-
tions models are developed which emphasize the nature of the identifying
restrictions that characterize VAR models. Explicit expressions for the Score
and Information functions are derived and their role in model identification,
estimation and hypothesis testing is discussed.

Introduction

Vector Autoregression (VAR) models have become a widespread tool for forecast-
ing, an application in which their virtues have been well documented (Litterman). As a
tool for structural and policy analysis, VAR models are more controversial. The VAR
methodology was initiatly formulated in an attempt to impose minimal restrictions on
economic data in the belief that many controversies would never be resolved as long as
empirical econometric models were overidentified using what Sims (1980) referred to as
incredible restrictions. By imposing minimal restrictions on a model, it was felt that the
true structure of the economic system under investigation would emerge.,

While this aim was perhaps laudable, it had the unfortunate consequence of holding
out the promise that something could be obtained for nothing. Critics of VAR models
{Leamer; Cooley and Leroy) point out that in simmltaneous equation modeis (SEMs)
it is necessary to make some identifying assumptions to give economically interpretable
meaning to model results, It is telling such a simple observation need be made at all. The
explanation for this seems to lie in the fact that VAR and other time series methods are
often treated as distinct from standard SEMs, even though they are better viewed as
special cases of the latter,

There are, of course, special features of VAR models that distinguish them from
other SEMs. Central to the VAR methodology are the concepts of the Impuise Response
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Function (IRF) and the Forecast Error Variance Decomposition (FEVDY), which are both
measures of impact of uncertainty in a system caused by the individual shocks that drive
the system, For these concepts to make sense, it is necessary to specify a model in terms
of a set of primitive, orthogoral shocks that are economically interpretable. Indeed, it is
the central place of these shocks and their interpretation that distinguishes the VAR
approach from much of traditional econometric practice, which often treats the stochastic
aspect of a model as a nuisance rather than as an intrinsic part of the system being
examined.

Another distinguishing feature of VAR models is that the associated reduced form
model is completely unrestricted, The term VAR itself implies this, and it is common to
hear VARs models referred to as unrestricted reduced form models. The critical implica-
tion of this feature of the VAR methodology is that these models are identified solely
by the restrictions placed on the contemporaneous interactions among endogenous
variables.

The important point to be made about these two features is that they are bath
aspects of the familiar identification problem. Ultimately, the believability of results
derived from a VAR or any other SEM will depend on the believability of the identify-
ing assumptions. The most telling criticism of the application of VAR methodology is
that the usual practice of imposing a recursive identification on a model is unbelievable.
While there may be situations in which a recursive structure is appropriate, they are the
exception rather than the rule.

Recently several economists have made use of the features of the VAR methodology
in models that are not recursive (Blanchard and Watson, Bernanke, and Sims (1986)).
This paper discusses this generalized approach to VAR models. It is meant to clarify the
relationship between VAR models and general dynamic SEMs as well as to bring together
a number of technical results concerning VAR models. Much of what appears here, while
implicit in other works, is discussed systematically an in more detail in this paper. Also
included- are explicit expressions, which have not appeared elsewhere, for the Score and
Information functions associated with VAR models subject to arbitrary linear parameter
restrictions. These results facilitate examination of model identification, as well as estima-
tion and hypothesis testing.

The format of the paper is as follows. The first section discusses the general formula-
tion of dynamic SEMs and lays out the notation used. The particular identifying
restrictions of the VAR approach are discussed in the second section. This os followed
by a discussion of estimation procedures applicable to VAR models. The paper concludes
with a few comments on the use of VAR models in economics.

Dynamic simultaneous equations models
A general specification of a dynamic linear SEM can be given by!:

YA = I yrsAs t7C+viB,
s=1

where y; and v¢ are both (1xk) random vectors, A, the Ag and B are (kxk) matrices of
coefficients, and z; is a (1xq) vector of nonstechastic (or strictly exogenous) variables?.
it is assumed that
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Iy t=s
E[w] =0 and Efviyg] = 85y =
0 t#s

i e, the v¢ are vectors of serially uncorrelated and mutually orthogonal shocks with unit
variance. The term impulses will be applied to these shocks, which represent the in-
dependent sources of variation in the system being modeled.

It is also assumed that the system is stationary and, therefore, that both an auto-
Hm_.nw%a:?wv Emn a B.oi_..w average (MA) representation exist and can be obtained from
H%nw._.uww M..wuw inversion. The AR representation is obtained by postmultiplying the

[- -]
o = I ypsAd + zC* + u,
5=1]

where A%= AA™ , C*=CA™ and u=v,BA™, with Cov(u,)=0Q=A"TB'BA-!. The u; are
the mean zero, serially independent step-ahead forecast errors (conditional on zy), also
termed the system innovations. The MA representation is given by

o0 -*-]

¢ = E wuMg + I 7 C*M;,
s=0 5=0

M“.Ea M=l and the Mg, s>0, can be calculated from the A¥ according to the relation-
1p

,H: alternative representation of the system can be written in terms of the orthogonal
shocks, vy,

(-] -]
vyt = I wR; + I z;C*Mq,
50 5=0

where R=BA ' M;. The Ry describe what is termed the impulse response function {IRF),
which traces the impact of each of the (orthogonal) system impulses on the observable
system variables. [R];: represents the impact on variable j when impulse i was one unit
in size (one standard deviation) s periods previously. The IRF, therefore, measures both
the source and the strength of each of the stochastic forces affecting a given variable
as well as the time of the response to those forces. The use of the IRF is a hallmark of
.5« VAR methodology. When policy interventions are associated with a particular system
impulse, the IRF is the proper tool for analyzing the dynamic impact of that policy? .

The stationarity assumption ensures that the A% will be close to zero for large
enough s. It is therefore convenient and useful to assume that, for s>p, G(s)=0 or,
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equivalently, A(s)=0. The intuition behind the assumption is that the distant past has
little or no independent effect on the present;ie., the effect of the distant past is expres-
sed entirely through the more recent past® . With this assumption the model can be written

yi = X¢f + o, where X =[y; 1 ¥4_2..- Yi-p %] and
B=[Af, A%, ... A%, CT @ is ((kpta)xk)).

In standard terminology, A, B, the Aq, and C are called the structural parameters, whereas
8 and Q are called the reduced form parameters. Notice that once A and B known, the
other structural parameters are obtainable directly from the reduced form parameters.

The stochastic nature of the model can be specified completely by assigning a prob-
ability law to the impulses. Here it is assumed that v are multinormal; because they are
linear combinations of the vy, the uy are also multinormal. The loglikelihood for this
modei (for yy, t=1,...,T) is

1 T
2 = - —[Tkin@ED+T QL + T r—xH0" (yi—x6)
2 t=1

1
= — —[Tkin(27) + T 1n|Q| + t(82-1UU)
2

1 1
= — — Tkin(2#) + TInAB?| — — tr(AB'B-TA'U'U),
2 2

where U=Y--X8 and Y and X denote the matrices composed of the T observations on
y; and X;. It is assumed that X has full column rank, an assumption that ensures the
identifiability of the reduced form parameters.

The number of reduced form parameters in this model equals k(pk+q)+k(k+1)/2,
corresponding to the § and £ matrices, while there are (p+1)k®+qk+k? structural
parameters corresponding to A and the Ag, C, and B. There are, therefore, (3k* ~k)/2
more structural than the reduced form parameters. An order condition for identification
thus is that {3k?-k)/2 restrictions must be imposed on the structural patameters. In the
traditional SEM little value is placed on specific knowledge of B, it being considered
adequate to estimate B’B, which has only k(k-1)/2 free parameters. B'B is the covariance
matrix of the (non-orthogonal) structural errors (i.e., the v¢B). This reduces the identifica-
tion problem to one of imposing k? restrictions on A, the Ag and C*. Clearly the identify-
ing restrictions cannot be confined to the contemporaneous coefficients matrix A in this
case, unless A is completely known a priori.

Identification in VAR models

In contrast, the VAR approach concentrates all identifying restrictions on the A and
B matrices. The reason for this stems from two features specific to this approach. First,
it is considered desirable to be able to trace the impact of each of the impulses on the
endogenous variables. This is not possible unless the elements of B can be identified.
Second, the modeling philosophy that has developed with the VAR approach deems it
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desirable to leave the reduced form parameters associated with the lagged endogenous
and exogenous variables (8) relatively unencumbered with model specific restrictions that
would be implied by restrictions on the Agand C. _

At least two substantive rationales exist for focusing attention exclusively on restric-
tions on contemporancous interactions. Many economic variables are determined in a
setting in which the values of past realizations of ail variables relevant to a system are
known to economic agents and potentially will be used to form expectations about the
future state of the economy. These expectations provide a link between past and current
realizations of all the variables in a given model. Given the considerable controversy
that surrounds expectation formation processes, it is deemed desirable to let the data
speak for itself. On the other hand, it is often reasonable to assume that variables do not
react immediately to new economic developments because of information lags or adjust-
ment costs. Such minimum delay considerations provide one useful souree of identifying
restrictions on the contemporaneous interactions among variables. A third reason for
using this sort of identification structure s that there is a significant gain in computational
ease when it is possible to separate any restrictions placed on § from those placed on A
and B. Undoubtedly this has influenced the development of this methodology.

By concentrating on A and B, the contemporaneous coefficients matrices, and leav-
ing the reduced form coefficient matrix 8 unrestricted, the order condition implies that
the number of free parameters in A and B must be less than or equal to k(k+1)/2, the
number of free parameters in £, implying that at least (3k* —k)/2 restrictions must be
imposed, Normalization (scaling) will reduce this number to 3(k?-k)/2.

General (linear) restrictions can be represented by

Rvec([AB]) =1,

where R has 2k? columns and the number of rows in both R and r is equal to the number
of restrictions imposed on the model. A more useful representation of the restrictions can
be made, however, in terms of a vector of underlying free parameters of the system, here
denoted 4. This general framework is given by

vec(JABY) =Z8 + W,

where Z, 8, and W are (2k®xn), (nx1), and (2k* x1), respectively, Viewed in terms of
the number of free parameters, the order condition is n < k(k+1)/2. While the two
representations are equivalent®, the parametric representation facilitates estimation,
since 0 is the vector of underlying parameters to be estimated directly, with Z and W
defining the transformation of § into A and B. This representation allows completely
general (linear} constraints to be imposed on A and B, including zero constrinsts (the
ith rows of Z and W equal to 0) as well as within —and cross— equation constraints (two
or more non-zero elements in the jth column of Z).

A simple example will clarify the relationship between the two methods for represent-
ing restrictions. Suppose k=3 and it is assumed that B=Ij. Letting vec(A¥Z, 8+W, and
vee(By=Z; 6+W;, this restriction can be imposed by setting Z, =0 (9xn) and W,=vec(l3).
This imposes k2=9 restrictions and therefore at least k(k—1){2=3 additional restrictions
must be imposed, Let these restrictions be a;,=0, 2;,=a 4, and a;3+233 +as3=1. These
restrictions can be imposed directly according to R, vec(A)T, , where

R, = 01 000000 agnd 1y = 0
010-100000 0
000 00O0T1 11 1
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Note that R and t are not unique and that the same restrictions would be imposed if
both were pre-nultiplied by any nonsingular (3x3) matrix. The restrictions can also be
imposed in parametric fashion by seiting

[ 0] and W, =
0
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With Z, defined in this way, @ corresponds to (a;; 221 %22 33z 313 3z3)’; but this need
not be the case. The same restrictions would be imposed if Z, were post-multipled by
any nonsingular matrix (with @ appropriately redefined).

The order condition for identification involves simply counting the number of free
parameters in the model or, equivalently, the number of restrictions imposed cn > E_m_
B. As Rothenberg has shown, a necessary and sufficient condition for the local annn._.
fiability of any regular point in R® (i.e., any point, #, for which the 53:3:@ matrix
1{8) has constant rank in a neighborhood of @} is that I(¥) be full _.m_._r.?xﬁamuﬁnm.mo_.
I{8) are derived in Appendix A and discussed more fully in the next section). In E.EEE«
this condition should be verifiable by examination of Z and W, which define the restric-
tions on A and B. Unfortunately no general results appear to be available. As a practical
matter the examination of the rank of I(8) for a few random values of ¢ should be suf-
ficient to establish the local identifiability of a given model. )

It should be pointed out that neither rank(Z)= n nor rank(A)=rank(B)=k is sufficient
to establish the identifiability of a given structure, though these clearly are necessary
conditions. An example will suffice to demonstrate this point. Suppose k=4, B=Ij and

A = [0 85 B85 04
8, 0 6 O
0 64 0 8y
0 0 85 By

(2, is therefore composed of columns, 1, 2, 5,7, 9, 10, 12, 13, 15, and 16 of _;..v
In this case A is invertible (except on a set of measure zero) and satisfies the order nou.&.
tion for (exact) identification (n=k(k+1)/2=1C} but I{f) has rank 9. This can be verified
by choosing at random a value for 6. .

it is also important to note that there is an essential redundancy in the A msa B
matrices, The restrictions imposed on A can be thought of as describing how the variables
in the system interact contemporaneously, whereas the restrictions on B describe the
direct impacts of the shocks on the equations of the system, so that nondiagonal m_ﬁnﬁ:.w
of B allow for more than one shock to enter a given equation directly. Often there is
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more than one way to formulate a given model, however. For example, the model defined
by

A =lal a2 0] B=[1 0 b1]
0 a3 a4 0 1 0
0 0 a5 ] [0 0 1
and that defined by
A =[al a2 a4 B=[1 0 0]
0 23 a5 0 1 0
[ 0 0 a6 ] [0 0 1 |

are equivalent. In both the first shock is equated with the innovation to the first variable.
Hence it is irrelevant whether its impact on the third variable is said to enter through A
or through B. Technically, if general nonlinear restrictions were used, there would be no
need to use both matrices explicitly, as either one or the other would suffice”. In practice,
however, it may be preferable to place restrictions on both matrices if such restrictions
can be given a readily interpretable meaning,

Estimation technigues

One main advantage of the VAR rmodel is that the identifying restrictions allow the
reduced form parameters to be estimated separately from the contemporaneous coef.
ficients matrices, A and B. The reduced form coefficients can be estimated efficiently
using ‘OLS. Maximum likelihood estimates of A and B conditional on the estimated values
of the reduced form coefficients then can be estimated. This two-stage estimation ap-
proach yields FIML coefficient estimates even if the model is overidentified because the
identifying restrictions on A and B are implicitly covariance restrictions and have no
implications for the reduced form coeficients 8, in contrast to the case of the general
SEM.

Details of the estimation strategy proposed here are most easily derived for the case
in which B=I}.. This restriction implies that each system impulse enters only one equation
directly (ie., B is diagonal), and that the normalization restrictions are applied to B.
This results in the log likelihood:

g= lamwl 1n(2) + T 1nllAll— ..M: vec(AY' (L @(Y—XB) (Y—XB)) vec(A).

It can be shown (see Appendix A) that

388,
ﬁ.mmml%uw = vee(X' (y—-XB)AA’).

Setting this equal to 0 and solving for 8 yields

B = (XX) XY,

i.e., the OLS estimator (recall that X is assumed to have fult column rank)®
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The fact that the FIML estimator for § is independent of A suggests the two-stage
estimation procedure discussed by Sims (1986). In the first stage the OLS estimate of fis
calculated. In the second stage numerical optimization methods are used to solve for the
FIML estimate of 6:

8 = arg max %(8,8).
9

To implement this strategy first define an estimator of Cov (ug)= by §=U U /T, where
U=Y—X§ are the least squares residuals. In Appendix A it is shown that

mn%M,E =2 (T vec(A'T) - vec(U "UA)).

Evaluating the likelihood and its gradient with respect to 8 at § vields
2(8.8) = - T[X In(2r) + In(IAID —Lvec(A) vec(f A)}

and
&mw& = T2 vec(a'T -TIA).

Both of these functions involve § and the data only through the estimator 2, a fact that
greatly facilitates estimation of 8,

Note_that §3 is not necessarily the FIML estimator of Q, which in general is given
by H=ATA! , where vec (A)=Z,0+ W,. { is not FIML because it fails to account for
possible overidentifying restrictions, though the two estimators should be quite close if
the identifying restrictions are good. In the exactly identified case, however, it will always
be possible to find an A such that §=ATA?, which satisfies the first order necessary
conditions (FONC) for a maximum. The two estimators therefore will coincide in the
exactly identified case. This situation is discussed by Bernanke, who notes that estimates
of A can be abtained by solving A 'QQA=I} using a nonlinear root finding algorithm® .

Standard VAR practice implicitly exploits this relationship by setting A equal to the
inverse of the Cholesky decomposition of £2. While this makes estimation easy by eliminat-
ing the need for a numerical search, it imposes an upper triangular form on A, implying
that the system has a recursive structure. While the “identification” problem is thereby
reduced to establishing an ordering for the variables in the system, the believability of
such a structure is generally questionable, raising doubts about the validity of model
interpretations.

For the general case maximum likelihood methods provide a straightforward estima-
tion framework. The conditional log-likelihood and score functions provided above can
be used in conjunction with quasi-Newton nonlinear optimization algorithms. One such
algorithm, the method of scoring, also requires the information matrix. This matrix is also
useful in checking model identification, as discussed in the previous section, in evaluat-
ing the quality of the estimators and in hypothesis testing, its inverse being equal to the
asymptotic Cov(8,8). It can be shown that the Information matrix, defined by
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AR a*e
896 3Gavec(p)"
1(8.5)=—E ;
a8 38

avec(Bad avec(Biavec(B)’

is block diagonal by noting that the upper right-hand term,

tlm .q.w<ﬁoﬁx .c>> .v“ ul..| w<mOH>> .v m HHWGC .X w.
o8 a0

is equal to zero, since X U has expectation zero'®.
In Appendix A it is shown that

A Tept :
Sooa= — Zi (TP k(A TA™ ) + (koU V)24,

where Py, p is the permutation matrix defined by vec(A )=Pm, nvec(A), where A is any
{mxn} matrix.

The upper left-hand block of the information matrix, which is associated with 8 (and
here denoted I(£)), may be obtained by replacing U U with its expectation, T(A'TA ):

10) = TZ; (P k(AToA™ ) + (ke ATAT ) Z;.

Note that this term is functionally independent of 8.

If the model is generalized to include a nondiagonal B matrix, the separation between
p and # continues to hold. This again allows for a two-step estimation procedure. Indeed
the first step is identical and yields the estimator (2. The likelihood and its gradient with
respect to & can again be evaluated at f, yielding (see Appendix A for details)

2(8,f) = |.:W:_Ga+ In(l|AB [|) —3 vec(AB™ ) 'vec(§1AB™)],

and

CLICH, [

T _3agipT
33 vec(A'l —QAB'BT)

vec(BTA QAR 'BT _BT)

in this case any A and B such that $i=A-TB’BA™! will satisfy the FONC for a maximum
and, again, such a solution will always be possible in the exactly identified case. The
information matrix again will be block diagonal with the upper left-hand block given
by:

¢ AR AR i e
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10)=T12" | P k(aTea™)+ (B BTeATB'BA™) .

~(B'BTeBA™) - Pk 1 (BTeA™) (B BTely)+ Py (B TeB™

Finally, note a special case of the general VAR model that is of interest because it
permits a simple recursive two stage least squares (2SLS) algorithm to be used to estimate
the coefficients of A and B. The quasitriangular specification is one in which, for some
ordering of variables and equations, A has unit diagonal and B is diagonal and in which
the ith equation (column of A) invoives at most (i-1) elements of #. This special case is
discussed more fully in Appendix B. It is also discussed by Bernanke and used in an
empirical application by Blanchard and Watson.

Summary

This paper has discussed the relationship between VAR models and other dynamic
SEMs. The distinguishing feature of the VAR methodology is the imposition of identify-
ing restrictions only on the contemporaneous interactions and on the use of orthogonal
impulses that can be given economic interpretation. Unfortunately the usual practice
of VAR modeling has involved the use of a rather suspect form of identifying restrictions.
Furthermore many practitioners seem to impose these restrictions implicitly rather than
explicitly, without a clear recognition of the implications. It is not unusual to find discus-
sion of the need to *“‘orthogonalize” the innovations (the uy¢) to coinstruct the IRF as if
this were a mechanical operation. While the }imitations of the usual practice of using 2
“triangular orthogonalization™, with its implication that the system is recursive, seems
to be wellrecognized, the response by practitioners has been to examine alternative
orderings of variables to assess the robustness of the results. This does not address
whether the results are robust to other identification regimes, and, as Bernanke points
out, the practice implies a strange prior in wich the analyst believes strongly in the
recursiveness of the system but is not sure in what order the variablies should be arranged.

While clearly the recursive model is not acceptable generally, at least two substantive
reasons exist for focusing on the contemporaneous interactions within the system. First,
economic theory says very little that is not controversial about the nature of expectations.
It is therefore prudent to leave relatively unrestricted the reduced form of the model,
which can itself be viewed as a forecasting model. Second, lags in the speed with which
variables can respond to shocks because of information lags and adjustment costs lead to
a minimum delay rationale for contemporaneous identifying restrictions. Formulating
believable identifying restrictions is never a trivial task. Whether VAR models prove to be
useful for structural analysis will depend on wheter such considerations will lead to
enough restrictions to identify a model. Identifying situations in which this is or is not
the case is the challenge VAR methodology poses to economists. By clarifying the unique
nature of this methodology and providing technical results useful in its implementation,
this paper should aid researchers interested in pursuing this challenge.
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Notes

Note that this formulation post-multiplies variables by coefficients.

The inclusion of deterministic variables in the z¢ vector raises no probiems. Strictly exogenous
variables are those that are uncorrelated with the system impulses and not affected by the endo-
genous (system) variables. This is essentially equivalent to assuming a block triangular structure
for the A(s) and a block diagonal structure for the B{s). This allows the density function for y
and 2 to be partitioned into a part representing y conditioned on z and a part representing the
density of z, which is independent of y. Note that this implies that lagged v is not useful in
predicting current z,

Another measure of the impact of the impulses on the system is given by the forecast error
variance decomposition (FEVD), which measures the percentage contribution of the ith impulse
to the L-step-ahead forecast error variance of the jth variable:

-1
T R

Kk R-1
M M ’mawv
i=1 =0

It should be noted, however, that determination of the lag length is not an easy or trivial matter,
It is possible for the system to have a dynarnic structure involving relatively high values of p, but
that can be approximately represented by a low p system. If standard prediction error methods
are used to determine the level of p, the lower value will be chosen and the structural aspects
of the system may be incorrectly represented.

Restrictions could be imposed on B'B matrix, but this has been done only rarely in practice,
However, see Hausman and Taylor and Hausman, Newey, and Taylor.

$  Thig can be checked by simply setting & randomly and verifying that R(Z8 +W)r=0,

Non-linear restrictions could be written in the form

vec(A) =f(8)
or, if it is desirable to include B explicitly, in the form
vec([A B]) =£(@).

Restrictions of this type have arisen in the context of rational expectations econometric models,
where @ is taken to be a vector of *‘deep” structural parameters representing such things as tech-
nology and agent preferences, By defining Z(§)=Df(), the results derived in Appendix A and
discussed in the section on estimation could be extended in a very straightforward manner. Such
an extensidn is not pursued here, however.

The uniqueness of this estimator is guaranted when A has full runk, a condition also necessary
for identification,

Bernanke seems to suggest (incorrectly) that only in the exactly identified case will the two-
stage procedure yield FIML estimates.

% The discussion of this point by Bernanke (pp. 13-4) appears to be in error.

Appendix A

Calculation of the score function and Hessian is facilitated by the following eight
results of matrix algebra and calculus. Used here is the convention that the derivative of
an n-vector with respect to an m-vector is (mxn), with —wiwx_mﬁum&\mxm. With the
exception of the product ruie (6), which makes use of (2) and (4), references to the text
by Graham are provided.
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(Table 1, p.121)
(Et.2.13, p. 25)
(Table 2, p. 122)
(Table 3, p. 122)

(D tr(XY) = (vec(X ") 'vec(Y)

(2) veo(XYZ) = (Z 'oX)vee(Y)

(3) (XeoY) (ZoW) = XZoYW

4) dAvec(X) _ 4 -

@ mcoomxw =A

(5) dvec(z) _ dvec(Y) 3vec(Z)
dvec(X)  dvec(X) dvee(Y)

(6) ovec(YZ) _ dvec(Y) (Zel) + dvec(Z) (18Y )
avec(X)  dvec(X) vec(X)

(Table 3,p. 122)

Table 5,p. 124)

(7) 3ves(AX'B) _ _ (xt ppo(x-TA")
dvee(X)
ax

These numbered results are referred to in the derivations below. Also used is the permuta-
tion matrix, Py, n, defined by vec (X ' Y=Pm pved(X), where X is (mxn). It can be shown
that Py, n=Pp, m and for X (mxn) and Y (pxq), YoX=Pp m (X&Y)Pp, q (Graham,
p. 28). Together these results imply that Pm, m (XeX ') is symmetric.

The loglikelihood for the model discussed in the paper is a function of the vectors,
¢ and f, coresponding to the contemperaneous and the reduced form parameters. It can
be written as

M= Ew.? 1n(2m) + T In|AB™ | — w te(AB'BTA'U 1),

where U=Y—X8, vec(A)=Z;0+W,, and vec(B)y=Z,0+W,. With * =ABIBTA’ used
for notational convenience, the block of the score function associated with the reduced
form coefficients, f, can be derived as follows:

9% _ _1 dvec(U) 3vec(UQ) vec(V) (5, 1)
avecld) 2 avec(f) 3vec(U)

nsw. (IxeX ') (vec(UR™) + (27" eli) vee(U)) (2,4,6)

u;w.cwex.v&gcn._ +uah) @

= vec(X 'UT") (2)

This in tum leads to the familiar result for the related block of the Hessian matrix:

it e A £t e S 0

e et it i et m bt st
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e dvec(X'UQ)
avec(P)avec(BY avec(B)
_ dved(U) dvee(X'UQ™) (5)
T dvec(R) avec(U)
= —(IeX ) (2" eX) 2,9
= _QleX'X 3)

Of more interest in the current contex are the score and Hessian functions related to the
“nonlinear” parameter vector, 8. These results are first derived for the simpler case¢ in
which B=ly. The relevant biocks for this special case are:

9% _ avec(A) T alnflAll 1 ovec(U'UAY vec(A) .1
ag 20 avec(A) 2 dvec(A) 2

= Zi (Tvec(A™T ) — veo(U'UA)) (2,4,6,8)
and

3% _ 3Z} (Tvec(A™T) — vec(U'UA))

agag’ a8
-T ’
-nlT dvec(A™) _ dvec(U C.S._N. 5, 4)
dvec(A) dvec(A) ._
= -2y (TP (A TeA™) + (ISU'U)Z, (7,2)

The associated block of the information matrix is found by replacing U’U by its expecta-
tion:

1(0) = TZ' (P (A TeA™) + (1eATAT)) Z,.

In the general case in which B is not necessarily the identity matrix, the analogous
results the score function is

M Jvec(A) 3nllAf 1 dvec(A) vec(U'UAB1BT)

675 T Ay "2 Bvec(A)
. dvec(B) 1 avec(B™') advec(!') vec(A'U'UAB™!) T ain|{Bl| 6.1
a0 2 dvec(B) avec(B) T avee®) |
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=
Tveo(A™T) — vec(U'UAB™ 8 1)
(8,.2,3,7)
vec(BTAUUAB'BT) - T vec(B™T)

The related block of the Hessian is

e _
agad’
FA Z(7,2,4,5)

TPy, (A TeAa™) — (BB ToU)

avec(U'UAB™ B™T) avec(BTA'UC'UAB BT)

L L TR k(B TeBT) +

avec(B) dvec(B)
where
U<00AC..C.PW|~ W....Hv = |AWIH WI.HQWI‘H>WC,S _ mJna WAWI.HP.C_CV (6, )
Jvec(B) .
and

wﬁwoﬁw...ﬁ AUUAB™ WI.HV = IAW|_ Wl.Hvav _ TW. WAOW...HQWL + B~Tep™! Q) 6,7
dvec(B)

with onwh.kc.c.pwl.. Note that Echﬁph.w_w.»-_ and hence E[Q}=TIly,. The
associated block of the information matriz, therefore, simplifies to

1) = T2 P, (A ToA™) + (B BTeATBBA™)
_ @B TeBA™) — Py k(B ToA™) (BB Tel)HPy, K(BTeB™)

Finally, the off diagonal block of the Hessian®
%2 avec(X'UQ™) avec(2 1)

avec(B)a0 20 20

Q_ﬁec.uo.

the expectation of which is clearly zero.

TR SR
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Appendix B

A quasitriangular specification is 2 special case of the general formulation that
permits a recursive two-stage least squares (2SLS0 estimator to be employed. In the over-
identified case this will not result, in general, in the FIML estimator but typically will
provide quite good starting values if the FIML estimator is desired. While more general
specifications are perhaps possible, it will be assumed here that, for some ordering of
variables and equations, A has unit diagonal and B is diagonal. A quasi-triangular system
is one in which the ith equation (column of A) involves at most (i-1) elements of 8. This
condition i equivalent to the ith (kxn) block of Z, having at most (i—1) non-zeyo
columns. If only zero-restrictions are<used (in addition to the normalization), a quasi-
triangular specificationt is one in which the ith equation involves at most i variables. It
was in this sense that the term was used by Bernanke.

Estimation of such a model with recursive 25LS involves using the first (i—1) columns
of V, the system impulses, to create instruments for the variables included in the ith
equation, The procedure can be described as follows. Create a set of index variables ¢; that
contain the indexes of the elements of € that enter the ith equation but have not yet
been estimated. Note that ¢, and possible others may be empty. Let Z} equal the
columns of Z,3, the ith block of Z;, and initialize =) (nx 1) and vec(A)=W;.

On the ith iteration check if ¢; is empty. If not, set

B = (" Q7 Q'R A

where R;_; equals the first (i-1) rows of V'U/T and Q=R;_,Z. At this point A will
be based only on those elements of 6 that have already been estimated (and on W)
Update A by setting veo(a)=Z, 8+W;. On all iterations, set B;=(A.'A ;)°*® and set
R;=A.;{3/B;. Notice that the algorithm requires only Tl and not U and that ¥ is not
directly calculated. Q; is the projection of the included columns of U in equation i on
columns ! though (i—1) of V, a mapping that is facilitated by the fact that E{V’ VI=TI.
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ANALISIS DE LA LEY ANTIMONOPOLIOS EN CHILE*
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Abstract:

The purpose of this paper is to provide an explanation to the way in which
the Chilean Antitrust Law has been enforced, based on all cases considered
by the Resolving Committee, between 1974 and 1987,

Through an anglysis based on global indicators such as: number of cases,
channels followed and sanctioned, the study concludes that the institutions
who enforce the Antitrust Law, were not guided by the principle of social
welfare maximization.

1. Introduccion

La Ley Antimonopolios en Chile ha tenido una corta tradicién especialmente si se
juzga su impacto en términos del ndmero de casos tratados por las comisiones encargadas
de velar por su cumplimiento. .

Sin embargo, resulta altamente inconveniente estimar el impacto de una ley como la
que se analizard en el presente estudio, en términos exclusivamente de lo que se aprecia
en primera instancia, esto es, los casos efectivamente tratados por la justicia. Ello es asi
especialmente por e} efecto disuasivo que las sanciones tienen sobre la realizacién de las
conductas por eventuales infractores,
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