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Abstract

This paper develops a filtering-based framework Jor non-parametric
estimation of parameters of a diffusion process Jrom the conditional
moments of discrete observations of the process. This method is imple-
mented for interest rate data in the Eurodollar and long term bond
markets. The resulting estimates are then used to Jorm nonparametric
univariate and bivariate interest rate models and compute prices for the
short term Eurodollar interest rate futures options and long term’ dis-

count bonds. The bivariate model produces prices substantially closer
20 the market prices.

I. Introduction

Financial economists have formulated a large number of models in continu-
ous time. One could say that continuous time models— particularly those founded
upon diffusion processes— form the bedrock of modern finance theory, Various
capital asset-pricing models, option-pricing models as well as contingent-claim
pricing models illustrate this. However, the estimation of such processes and the
use of these estimates to price securities have assumed quite rigid functional forms
for the drift and diffusion coefficients of the diffusion process. Assumptions such
as constant drift and diffusion are at odds with the empirical realities of time-
varying mean and variance. The interest rate market, in particular, shows signifi-
cant departures from the constant mean and variarice assumptions.
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I1L. Pricing of Securities

After estimating the eonditional moments, we need to consider the pricing .om
securities. We consider sccurities whose payoff is at time 7. This is a security
which can be described by the following set of equations. The process followed
by the underlying asset:

dr (1) = p(r(n)dt + o(r(r))dB,

The stochastic differential equation followed by the derivative security that is
a function of the .asset:

] 2
df ()= wﬁiwx%fw.w% (o) far+ ot L ap

Terminal condition:
tlimp f(r,0)=h(r) Vr(t).

This pricing framework includes both discount bonds and European ovn.ozw. For
American securities we would also need to impose the boundary conditions.

The price of this security is. the diffusion process fir, t). If S.m volatility of the
process were constant, then a riskless hedge could be formed in the manner of
Black and Scholes. Then we could solve the price. of the derivative security by
pricing the riskless hedge. But with time-varying volatility a riskless hedge is no
longer possible. Hence, to solve fir, 1), we usually impose restrictions on the
instantaneous return of the security, generally based on. some equilibrium model.

When we impose a restriction on the instantaneous return of the security, the
implication is:

Expected return of fir, ) = b(r, 1)

for some function b(r, 1)

—|Z+Z LS 52y | =
= :ET Fo Dty T o (nn | =bir) .
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with the terminal condition:

limy f(r,0)=h(r) Vr@).
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Following Durrett (1984) the solution to this partial differential equation is
shown in Appendix B to be:

, T ,
U =E" h(r) mk.u@.-l (b(r, :v«?v )

where E’denotes that the expectation is taken with respect to the probability
density function of ~(r) and is. taken with the starting value of the interest rate
process at £ and with respect to time ¢ information set.

One assumption is risk-neutrality, i.e. b(r, 1) = "t Vi. We make the equilib-
rium assumption that b(#, £) can be identified in terms. of the drift and diffusion
of the interest rate process. This constraint implies that the return on the security
equals the riskless interest rate plus the market price of interest risk times the
standard deviation of the derivative security. The market price of interest risk for
a security, Ar, 1), is defined as the instantaneous excess return above the riskless
rate divided by the instantaneous standard deviation over return. The market price
of risk is assumed to be the same for all interest-rate derivative securities. Thus:

\A“ 3 WMTW.EACT

19
29

o’ (r()) |=r(+ Ar(t)o(rt))  3)

subject to the terminal condition that:
tlimy f(r,t) = h(r) Vr(t)

This partial differential equation can be solved by running the diffusion pro-
cess r(f). This provides a probabilisti¢ solution for the price of the security. This
solution is shown in Appendix B to be:

fe,y=E"* h(r)exp Q.WTA@ - »?@sqﬁx@vd&wv 4

For a pure discount bond the terminal condition is:

Fn D=1 ¥Yr@) (5)

Then the price of a discount bond is:

1= ([i=rt)~ Ar(s)orr(sp1as ) ©

For a European call option on the discount bound with exercise price K and
expiration Q < T, the terminal condition is:

gy T
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Clr, Oy = Max (0, f(r, @) - K) Vr(») @)
Then the price of the option is given by:

C¢,0)= mu_m&e&c, f(r,0)—K]) exp m b ﬂTw@T »Eé&«@é&ﬁ ®

To derive an analytic expression for this expectation-is difficult except for a
few rather simple cases. An alternative is to generate diffusion processes accord-
ing to the estimates of the drift and diffusions m:a thereby evaluated the integrals
along the diffusion: paths.

This is the. approach taken in this paper. Therefore, the :_Sm«w_m are Rv_moom
by sums. The- diffusion process is generated and the price of the security is com-
puted.. Then the: expectation is computed as the m<n8mm for- a large number of
diffusion E.onnmm.

IV. Empirical Results

Two sets of interest rates data are used: The first is the three: month Eurcdol-
lar interest rate: The second is the interest rate on 20 year constant maturity long
term bonds. . These are obtained from DATASTREAM. These data sets go from
January 1, 1985 to November 30, 1994, a total of 2587 observations. The interest
rates are converted into annualized continuous Emam The derivative security
examined is the, Eurodollar m:nE.nm option. from the Chicago Mercantile Exchange.
The choice of the futures option contracts is Eo:ﬁ:mm by the fact that the interest
rate futures. option rather than the-interest rate option. s t !
ment for managing inierest rate risk. The futures options data are on 5 exercise
prices for each contract expiring in December 1994 .with option premia going
from April 29, 1994 to December 1, 1994. For long term discount bonds, treasury
strip prices from the Wail Street Journal of December 8, 1994 are used.

Table 1 presents summary statistics for the two interest rates. Dickey-Fuller
tests fail to reject the null hypothesis of unit-root for both the interest rate series.
The overlapping nature of the observations induce substantial autocorrelation in
the data. The tests are corrected using 20 lags. Nevertheless the the non-stationarity
of the interest rate process is not proven beyond doubt. However, the increments
of the discrete process do overwhelmingly reject the null of unit roots.

The drift and diffusion functions for the two interest rate series are computed
from the conditional moments of the discrete observations as described in Appendix
A. The estimated drift function for the two interest rates of lagged yield are shown
in panels A and B of Figure 1. In both cases the conditional mean is very close to
zero. However, the point estimates appear consistent. with mean-reversion. When
the interest rates move below their long-run mean, the drift is positive and when
interest rates are above their long run, the drift is negative. The drift appears to be
asymmetric with respect when the level of interest rate is above the unconditional
mean versus when it is below: Panels C and D show the diffusion functions (o?) for
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TABLE 1
SUMMARY STATISTICS
3 Month A 3 Month Long Term A Long Term
Eurodollar Rate | Eurodollar Rate Interest Rate Interest Rate
Mean 6.517 -0.001 8.295 -0.001
Variance 4.198 0.006 1.371 0.004
Skewness —0.306 -0.852 0.707 -0.618
Kurtosis -1.158 14.776 0.807 ; 8.467
Py 0.999 -0.022 0.998 -0.009
Py 0.999 -0.010 0.997 -0.033
Ps 0.998 -0.001 0.995 -0.010
Dickey-Fuller Statistic
for Non-stationarity -1.20 ~-24.66 -2.89 -25.54
p-value 0.64 0.01 0.05 0.01

The “A 3 Month Eurodollar Rate” represents the change in the 3 Month Eurodollar Rate. The notation
is similar for the :rosm Term Interest Rate™.

The Dickey-Fuller test is constructed using 20 lags. The p-value represents the probability of accept-
ing the null hypothesis of nonstationarity.

the two interest rate series. The diffusion increases with the level of the interest
rate, so it is consistent with a specification such as or® with 8 > 0. However, the
rate of increase starts decreasing. The slope is much greater for the Eurodollar in-
terest rate than the long term rate. Hence, the interest rate volatility increases much
faster at the shorter end of the term structure than at the longer end.

For purposes of comparison and insight, conditional variances are plotted in
Figure 2 for the level of interest rate and the increment in interest rate for both
the interest rate series. Panels A and B show that the conditional variance of the
level of interest rate r(t + 1) conditioned on A7) and C and D show the condi-
tional variance of r(t + 1) — n(f) conditioned on #(7). Both show that volatility of
the interest rate increases when interest rates move away from their long run
mean.

For the Eurodoliar futures call options, the final payoff is given by:

_[(1I00-X)—KT) if KT) < 100-X
;delﬁ 0 if KTy > _ooLL

where X is the exercise price and H(T) is the terminal interest rate. As a first
approximation we are ignoring the early exercise option. We consider two interest
rate processes. The first is a univariate process

= u(r) dt + o(r,) dB,
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FIGURE 1

PARAMETERS OF INTEREST RATE PROCESS
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The drift functions are constructed from conditional means using adaptive ker- (e The diffusion (shown as sigma squared) functions are constructed: from. the conditional
nel regression of yield changes with cross-validated bandwidth. Lagged yield is o kemel regressions of increments of squared interest rates and covariances of drift and in:
the independent varinble: The yields are from January I, 1985 to November 30, 2 terest rates as shown in Appendix A. The bandwidths are' cross-validated:

1994, a totaF of 2587 observations. The. weekend is treated as. a single day.
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FIGURE 2

CONDITIONAL MOMENTS OF DISCRETE OBSERVATIONS

A: Conditional Variance of 3 Month Eurodollar Yield
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The conditional variance is constructed using adaptive kemel regression of the squared
residuals from the unconditional mean of yield level with cross-validated bandwidth. The
independent variable is lagged yieid.
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C: Conditional Variance of Change in 3 Month Eurodollar Yield
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The conditional variance is constructed using adaptive kemel regression of the squared
residuals from the conditional mean of change in yield with cross-validated bandwidth.
The independent variable is lagged yield.
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The second is a bivariate process

Y _[uey o o)
dr' ) | o El

o s By N Bt e -

where the superscripts s and [ refer respectively to the short (Eurodoflar). and Tong
(20 year constant maturity) interest rates. I assurne a interest risk premium of 0.05.

Table 2 reports the computed prices of Eurodollar futures options for two
maturities and three strike prices. 100 different interest rate paths are generated

TABLE 2.

1mE,...OwZ_>ZOm OF UNIVARIATE & w~<>w_>ﬂm ZOUm_lw«
IN PRICING Eéwmm Ov‘_.—OZm

Strike: Short. | roam, Z&‘wﬂ vlnn Price Price . [+ Standard
|~ Rate Rate: Awgnl: {State=2): | Futures Option
foe e e SRR E LN, T URNE N DI R B Price
930 | 104 4.7500 |{7.7400 | 1.290 1.728 1.727 2216
; (1379 | (1.382)
- Qo4 | @ 8:
935 | 104 .] 47500 |77400. | .. 0840 |- 1280 | 1281-l _ 1713
; , : {0:938) | (0.939)
) (1593 | (1.629),
9377 [ 104 | 47500 {77400 | 0640 Loz 1102 | 1493
| 1. 0761 | (0.762).° "
o (1413) | (1.448)
93.0: 57 54375 | 7.7400 | 0.960 1.192 1.197 1.544
. . 08637 | (0.852). |
: (1.560) | (157D
935 | 57 54375 | 7.7400 0.490 0741 | 0747 | 1007
: 0419 | ©41p)
_(r1oey | (1.113)
937 | 577 | 54375 |77400 | 0386 [ 0560 | 0566 | 0760
(0.240) | (0.234)
0924) | (0.930)

The table mEEEﬂunm :.6 Eurodollar futures call option prices computed. using non- parametric drift and
diffusion. The computation is dene as ‘an average across :.n interest rate paths. from the drift and diffu-
sion. The standard futures option price is computed using the assumption that Eurodollar yields are
lognormally distributed: The short rate is the 3 month Eurodollar and leng is the 20 year constant
maturity U. S. governiment bond rate. The price identified as (state = 1) is computed from an interest rate
model with only the short rate. The price identified as (state = 2) comes from a model with both the
short and long rates. The numbers in parentheses are the 5% and 95% values of the computed price.
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TABLE 3

PERFORMANCE OF UNIVARIATE AND BIVARIATE
MODELS' IN' PRICING TREASURY STRIPS

Expiration Maturity’ Z‘E,wﬁ v_.mno, Price Price Vasicek Price
: =t L e (StatesT) (State=2) : =

Nov 2004 10445 | 14680 | 11873 | 14755
Nov 2014 [ 20140 - 27231 ' 20.045 27873

,2o< 2024+ 7 46,070 L 51,334 ﬁo: <A mmdm(

The prices of treasury strips are-on. December 8, _cf The: Eurodollar rate was. 6.40% and the _oum term
rafe was,7.74%. The market. E._nn is computed as: the midpoint between the bid and asked: prices. The
price from model (State = 1) _m from the univariate model with nonparametric drift and diffusion.. The
ptice. from model (State=2) is from the bivariaie model with nonparametric drift and: diffiisions. The
VasiceKimodel pricés are compuited” tiéating the- 3 month rate as” the short' rate- withi the paramietérs
computed: through OLS The parameters are-long-run' mean = 5.459%, speed of mean reversion = 0:0009,
and volatility = 0.076.

for mmn: of Sn wo Boan_m For the E&ﬁmﬁ 588& rate Eo%_. the no:,n_m:o:
between the two process is assumed to be constant. Using cither the one or two
interest rate models, the computed prices are greater than the market prices of the
securities. However, they are closer to the anwQ prices than the price ooB_uSaa
using: a standard futures; option pricing formula assuming that. the yields are log-
normally distributed.. The reason for-the poor performance of the. nonparametric
model in this cdse can be attributed to, the. Federal Reserve _=n_.mmm_=m the Fed
?:am rate by, 75% on Zo<a§co_. 15. The increase also resulted in an increase in
the mE.oao:E. rate. The 5»%2 v:nn of the. futures. option appears. to: =m<n incor-
mo_.mﬁn_ the anticipated Snamm@ in: the Fed funds rate. . . .-

Finally, we also examine prices. for E..:o.v& only treasury mn_vm o 5 N@
and 30 years maturities, The date used is December 8, 1994. The 3 month Euro-
dollar and 20 year bond interest rates on that date are respectively 6.40% and
7.74%. For this prices the risk premium is assumed to be 0. For comparison,
prices are also computed with the Vasicek mean-reversion interest rate model
Prices are computed for the strips using the univariate and bivariate models with
nonparametric drift and diffusions. The univariate model prices-are-substantially
closer than the market prices and"are closer to the: Vasicek pricés. However; the
bivariate model prices are quite close to the market pricés. One can conjecture
that a univariate model incorporates information only about the level of the inter-
est rate whereas a bivariate model also- adds information about the slope of the
term-structure.
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V. Conclusions and Extensions
Extensions

The present version of the paper is preliminary. Substantial improvements are
possible. The construction of the confidence bands around the model based secu-
rity prices will permit statistical inference. A drawback of the interest rate models
estimated is that the interest rate is not being prevented from becoming negative.
Future versions of the paper will consider nonparametric specifications that pre-
clude negative interest rates. -

Pricing of other derivative securities can be considered. This version of the
paper has- estimated the moments of the interest rate process and examined secu-
rity prices implied by the estimated process. A’ natural complement would be to
take. the observed prices as given and extract the implied moments. The feasibility
of such an approach wilk be hopefully examined in. future versions, interest rate
process.

Finally, the pricing approach taken has taken an equilibrium approach as given.
Whethier such an equilibrium approach can be avoided will be one part of future
research: o : o )

Conclusions

This paper uses. a filtering based approach to:estimate the drift and diffusion
functions' for interest rates in the Eurodollar and Tong term US government bond
markets. The ‘estimates "are then used 'in univariate arid bivariate processes to
compute the prices of Eurodollar futures optiohs and principal only iréasury strips
(i.e;, pure discotint-bonds.) Fot the futiires options, both the interest rate models
produce prices greater than the market prices: For the discount bonds, the univariate
model produces modef prices greater than the observed prices. However, the bi-
variate‘model produce prices quite close to the observed prices.

Notes

The assumption of stationarity for the increments of the process is much less restrictive than the
stationarity. of the process itself, as is seen for the standard Wiener process.

L.am in the midst of computing the confidence bands.

This is the average of the risk premium across Eurodollar futures prices for December 1994 and
March 1995 for 10 days starting May 1, 1994,

[
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APPENDIX A
RELATION BETWEEN THE DISCRETE AND CONTINUOUS MOMENTS

The relation between discrete and continuous moments can be established
using a filtering framework. Kalman and Bucy (1961) provide the relation in case
of linear processes. However, in the present case the processes are non-linear as
well as non- parametric. Let 0 < £, <1, < ... < t, < ... < T denote the integer
partitions of [0; 7], the time points where observations are available. Equation 2.3
may be integrated from s to t to obtain an expression for r(f) in a stochastic
integral form:

re)

r(s)+ ﬁ (r(u))du+ hqﬁgxwg

Taking conditional expectation of this equation at
time s we get.

r(s)+ m.hﬁhtﬁlzvv&:v + mhﬁ._.“o.ﬁlzvv&w:v

the conditional expectation is taken with respect
to the o-algebra ¢{r(1) 10 € u < s5}. But since r(f)
is markov, the g-algebra can be reduced to o{r(s)}.
By Fubini’s theorem, since the integrals are
bounded, we can interchange the expectations and
integrals and get

r(s)+ [[ (B, (u(r@))du+ [ (E,(0(r(u))dB,
The second expectation on the right is of a Wiener

process.
Therefore,

E, (r()

E, ()

r(s)+ [ (B, ((ru)))du

Now we can replace s with 1, and r with ¢,

time points where observations are available,

(A1) = E, (n1)
’ the

E, ((r, ) = 1)+ [ (B, (u(r(u))du

[ (B, (utr(u)du

f

A>Nv m:. :WQ..T_VV - Aﬁ.vu
Using an admittedly crude trapezoidal approxima-
tion for the integral gives us,

(A3 (E, [rlh1) = r0)] = [E, (ot )+ E, (U 2+ 00

This is the expression for the evolution of the conditional mean.
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To solve for the diffusion parameter of the interest process we follow Jazwinski
(1970) (section 4.9) and obtain the evolution equation for r2 (r). By It6’s rule,

i = [2r()p(r(D)+ 0> (r(1)|dt + 20(r(1))dB,

Integrating this equation from s to r, we get

PO = P+ [ [2rprw) + 3 (r(w)) du

(A4) + [20(r(w)la8,

Taking conditional expectation of this equation at
time s we get

)+ [ E[2rutr(u) + 07 (r(u)] du

E[F(1)]

13
+ [E[20(-w))dB,
where, as before, the relevant c-algebra is o{r(s))

)+ [ E,[2rwyu(rw) + 0 (r(u))] du

1]

(A.5) = E[F()]

Using the trapezoidal approximation for the inte-
grals as before,

[E, (i, PHCr(8, D] + (r(2)p(r()))

i

N.:.ALQ.#_VV - LA&L

(A.6)

+

_, .
5 T.u.. HQNA\QE Nl+o? (r(y; vv_

Thus, we have obtained the best estimates for u(r(#)) and o(r(r)).
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APPENDIX B
ﬂ DERIVATION OF THE PRICE OF A SECURITY
Consider a process g(r, #) such that
(B.1) e 8, D=fr, T~

This transformation: converts the terminal condition into an initial condition. The
partial differential equation is :»33::& into the following:
dg dg 1 dg

B.2 %L %
B2 a :?,Smw

o’ ()= b(r.Ng(r,T~1)

subject to the initial condition that:
L:: o glr,n)= El Yr(t)

This partial differential on:m:os can m_mo be written as:
%% + hw @Aﬁ D%Aw ﬂlc

ot
0}
i Ulmubw b, %@ T-1)
o . L
where L is the elliptic operator. This nw..m..&; o..msn& equation can be solved by
running the Itd process: r(#): which: has the drift @ (r, t) and the diffusion o (r, #).
Durrett (1984) provides the solution for both the homogeneous and Sro-:omn-
neous cases of this equation The' solution to thé inhomogeneous case is not dif-
ficult. This consists of evaluating the Ssoaomm:ao:m part along the path of the
Its process. Thus, in case of the general partial differential equation:

(B.3)

dg

%~ =Lg-b(r,t)g(r,T—1)

the solution is given by:

(B.4) g(bt)= f(.T-1)=E'| h(r) exp g —(b(r, &&v

where E‘denotes that the expectation is taken with respect to the probability den-
sity generated by r(t) and is taken with the starting value of the interest rate

process at £,

. Wi‘:‘k“

He B

o
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For an equilibrium model based restriction on the returns we get:

¥, | o°f
(B.5) a %:?ST 339,

subject to the terminal condition that:

tlim o f(r,t) = h(r) Vr(t)

o’ (r)=r(t) f(r,t) + Alr(1))o( %z.wm

Transforming the partial differential equation as before, using

g(r.y=f(rt=T)

we get:

. deg 1 g Jg
6 -+ = T-
(B.6) > + m\ 237 =r()g(r,T —t)+ A(r,D)o(r.t)—= gy

subject to the initial condition that:
lim ) g(r,0)=h(r) Vr()

As before, we write the partial differential equation using the o::in operator £ as:
%

B.7
(B.7) Y

= Lg-r()g(r,T=1)—- Ar,t)o(r, 3

There are two possible ways to solve this equation. One would be to use a risk
adjusted process r+(¢) with the same diffusion but a different drift. This would
transform the partial differential equation into

9% _

B.8
(B.8) @

—r(t)g(r,T—1)
1 d%g
where, L£*g=(U(r,0)+ A(r, GQ?:V R 5 or.n—2 >

Thus, we have a transformed process r+(f) with the drift u(r, ) + A(r, Hotr, t) and
diffusion o (r, 1). Then, as in the risk neutrai case, the solution of the partial
differential equation is given by:

(B.9) FOD=g(t,T—1)= E!| PE, eﬁm [ fm@&&

where again E! denotes that the expectation is taken with respect to the probabil-

ity measure generated by r+(r). By generating different interest rate paths for 7(7)
with the starting value of r(¢) at ¢ we can numerically evaluate the expectation.




