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Abstract

This paper makes two contributions: (1) it presents estimates of a
continuous-time stochastic-volatility jump-diffusion process (SVJD) using
a simulation-based estimator, and (2) it shows that misspecified models
that allow for jumps, but not stochastic volatility, can give very bad
estimates of the true process.

Simulation-based estimation is. a very flexible and powerful technique.
It is ideally suited 1o high frequency financial data. It can estimate models
with intractable likelihood functions, and since the simulations can be
peiformed in (essentially) continuous-time the estimates are consistent
estimates of the parameters of the continuous-time process.

L. Introduction

Financial economists achieved unprecedented success over the last twenty-
five years using simple diffusion models to approximate the stochastic process for
returns on financial assets. The so-called “volatility smiles and smirks” computed
using the volatility implied by the venerable Black-Scholes model reveal, how-
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and comments.
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ever, that a simple geometric Brownian motion process misses some important
features of the data. High frequency returns data display excess kurtosis (fat tailed
distributions), skéwness, and volatility clustering. ‘Capturinig these essential char-
acteristics with a tractable parsimonious parametric model is difficult.

Until recently, applied financial economists were forced to selection from an
unappetizing menu. They could choose a process that made it relatively easy to
price options, or they could choose a process that was relatively easy to estimate.
Option pricing theorists added jumps and stochastic volatility to the standard
geometric Brownian motion process. The additional stochastic differential equa-
tion —a second state variable~ in volatility gives a tractable system of differential

equations for pricing options. But, estimating stochastic volatility models is ex-

tremely challenging. Stochastic volatility is a latent variable with no closed-form
representation for the likelihood function. Econometricians approximated volatil-
ity clustering by representing returns as a generalized autoregressive-conditional-
heterskedastic (GARCH) process. GARCH processes have a tractable likelihood
function for estimation. But in general, GARCH processes do not have a diffu-
sion process as their continuous-time limit.

Recent advances in computing and econometrics offer a better selection. This
paper presents estimates of the Norwegian Kroner—British pound exchange rate as
a stochastic-volatility jump-diffusion process (SVID) using 2 simulation-based
estimator. Simulation-based estimation is extremely general and flexible, but
computationally intensive. We use a simple specification with constant jump in-
tensity and a mean-reverting process for volatility, This is the stylized specifica-
tion from eption pricing models. Although the specification is simple, the model
is not rejected by the data. A specification that allows for volatility clustering and
jumps is crucial because geometric Browning motion- cannot match the higher
sample moments in the data. Just adding jumps does not give an adequate ap-
proximation. The jump diffusion specification tries to capture the volatility clus-
tering by ‘splitting the data into a high and low volatility regime and ignores the
jumps. Monte Carlo evidence confirms that the pure jump model is badly biased
when there are jumps and stochastic volatility.

Estimation of SVJID processes is new. Duffie, Pan, and Singleton (1998) and
Chernov, Gallant, Ghysels, and Tauchen (1999) use a simulation-based estimator
to estimate a complex model with conditional jump intensity and stochastic vola-
tility. Bates (2000) estimates the SVJD process for S&P futures prices implicit in
futures option prices.

The outline of the paper is as follows. Section II shows the data and sample
statistics. Section III presents estimates of the daily “returns” process (log differ-
ences) of the Norwegian-British exchange rate for three nested diffusion processes
in popular financial economics: geometric Brownian motion, geometric Brownian
motion plus Poisson distributed jumps (jump-diffusion), and a jump-diffusion
process with stochastic volatility.

Section IV presents Monte Carlo evidence. We generate data from a stochas-
tic-volatility jump-diffusion process and estimate a SVJD model with the simula-
tion-based estimator and a misspecified jump-diffusion model by maximum like-
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lihood. The small sample distribution of the estimates for the correctly specified
model looks pretty good for the stochastic volatility equation. But the Monte Carlo
evidence also shows that a sample size of 2000 —daily observations for a decade—~
is not large enough to pin down the parameters of the jump distribution accu-
rately. The misspecified jump-diffusion model badly overestimates the jump prob-
ability and underestimates volatility of the jump and the unconditional variance of
the process. It ignores the jump, and fits the stochastic volatility as a high and
low volatility regime. Section V has the conclusions.

II. Data

Figure 2.1 shows the time-series plot and empirical density relative to a nor-
mal density for daily returns (difference in logarithm of the daily exchange rates)
on the Norwegian Kroner-British Pound exchange rate! from January 1990 through
August 1998.

FIGURE 2.1
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The Norwegian exchange rate data display the generic characteristics of for-
eign exchange data-excess kurtosis, skewness, potential jumps, and volatility clus-
tering. Many studies document these stylized facts in other foreign currency
markets, e.g. see, Anderson, et al. (1999), Bates (1996), and Jorion (1988).

- Table 2.1 gives estimates of the first four unconditional sample moments?
and the standard deviations of the estimates. .

TABLE 2.1

ESTIMATES OF THE UNCONDITIONAL MOMENTS

Mean Variance Skewness Excess Kurtosis
Estimate ) 0.0402 4.8633 0.8178 10.8507
Standard error of estimate 0.0472 0.1041 0.0175 0.2967

The distribution is slightly positively skewed, 0.82, and has substantial excess
kurtosis (fatter tails than a normal) of 10.85.

Figure 2.2 shows the estimated autocorrelation in returns and the autocorrelation
in the squared returns.

FIGURE 2.2
AUTOCORRELATIONS
NOK/GBP: AUTOCORRELATION IN THE NOK/GBP: AUTOCORRELATION IN THE

SQUARED RETURNS RETURNS
Q-stat = 196.3153, significant on 99.9% level Q-stat: [4.1457 Not Significant on 90% level
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There is no significant autocorrelation in returns. There is significant positive
autocorrelation in the squared returns —-high volatility is followed by high volatil-
ity and vice versa.
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IT1. Estimation

This section presents the estimates from three increasing more complicated
popular specifications in financial economics: geometric Brownian motion (GBM),
geometric Brownian motion plus a jump process (JD), and stochastic-volatility
plus a jump diffusion process (SVJD). The goal is to find an adequate approxi-
mation to the data with the most parsimonious representation.

Returns in a GBM process are normally distributed. A normal distribution is
symmetric (not skewed) and has no excess kurtosis (excess kurtosis is measured
relative to a normal). By construction the GBM process matches the first two
unconditional moments and cannot match the higher moments in the data. A jump
diffusion process is leptokurtic and can be skewed. A jump diffusion process
could match the unconditional moments. Qur estimates of the jump diffusion
process match the first two sample moments and generate about % of the required
excess kurtosis. The estimates, however, are not reasonable. The jump probability
(probability of an unusual event) is 33% each day. The jump diffusion estimates
try to pick up the volatility clustering in the data by dividing the model into a
“high volatility regime”~the jump regime~ and a low volatility regime. The sto-

chastic volatility jump diffusion model could match the conditional and uncondi-

tional moments. Our estimates match the first two unconditional moments and
generate 90% of the sample excess kurtosis. A formal specification test does not
reject the SVID model. :

3.1 Geometric Brownian motion

Geometric Brownian motion® is the simplest and probably most popular speci-
fication in financial models. The venerable Black-Scholes option-pricing mode]
assumes the underlying state variable follows GBM. GBM specifies that the in-
stantaneous percentage change in the exchange rate has a constant drift, Ky, and
volatility, o,

m,mu.:au:o.w&s\ 311

N

The error, dW, is a standard Weiner process.
Under Geometric Brownian motion the time-¢ exchange rate evolves accord-
ing to,

S, = So expliiyt + oW}

Let 7> 0 denote the interval between observations. Then, the 7 period loga-
rithmic return,

in(5+94 )= x(D) = 47 + 0, (W~ W),
14

.
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is normally distributed,

x(T) ~ N(yt,0,5°1) 3.12

with a mean and variance proportional to the observation interval. This follows

since the difference (W, ~W) in the Weiner process is normally distributed with

mean zero and variance T.
Defining the unit interval as a day,

In§,,,—In§, = Mg +0W
W, ~ IIN(0,1)

gives a discrete-time version of GBM that matches the data mqam_:onnw.
Table 3.1.1 shows the parameter estimates.

TABLE 3.1.1

PARAMETER ESTIMATES GBM

Hp Op
Parameters 0.0402 2.2047
Standard Errors 0.0472 0.0334

Matching the momients

The OLS estimates of the drift and volatility (square root of the variance) are
unconstrained estimates of the first two unconditional sample moments, so they
match the estimates in Table 2.1 exactly. The GBM model specifies that returns
are iid normally distributed, equation 3.1.3. By definition the GBM specification
cannot match the higher unconditional; or conditional, moments of the empirical
distribution of the exchange rate:

3.2 Geometric Brownian motion plus jump

Merton (1976) added Poisson jumps to a standard GBM process to approxi-
mate the movement of stock prices subject to occasional discontinuous breaks,

ds
Mutm&+o.w&§+§m 3.2.1

3.1.3
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Here dg is a Poisson counter with intensity A, i.e., Prob (dg= /)= Adt, and
k is a draw from normal distribution,

k~N(u,,0,%)

The jump-diffusion process is leptokurtic (positive excess kurtosis) and can

be skewed.
The logarithmic return for any day contains two components,

X ifQ=20

InS,,-InS, =y, = stk thy+okg Q2 1 322

v

a draw from the GBM process, x, plus possible draws k,k,., from the jump
process. A draw from the Poisson process determines the number of draws from

the jump process, &, each day,
e
q!

3.23

Prob (Q@=¢q)=

We estimated the parameters of the jump-diffusion process by maximum like-
lihood. The log-likelihood function is,

~ (V. ~Hp~ qi,)’
20, +q0,%)

exp

I —
1(8,y)=),In ; 3
pars SR [er Y )\ 2n(c5° +90,°)

the sum of the logs of sums of exponentials weighted by the Poisson probabili-
ties. The scores are messy nonlinear functions of the unknown parameters, 04
The maximum likelihood estimates must be computed numerically.

We computed the estimates using the optimization toolbox in MATLAB. The
likelihood function is not well-behaved —as one would expect if there are occa-
sional discontinuous jumps. There are local maxima and the algorithm did not
always converge. A run took approximately one hour on a Pentium I 266 MHz
PC. Table 3.2 gives the parameter estimates and sample statistics.

TABLE 3.2

PARAMETER ESTIMATES JUMP-DIFFUSION

Hg ] ) i A
Parameter 0.0702 1.2747 -0.0897 2.9815 0.3354
Standard error 0.0421 0.0527 0.1459 0.1487 0.0455

AR T,
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The jump diffusion model nests the GBM specification. It fits the data better
than the simpler model. If we use a likelihood ratio test as a diagnostic, it rejects
the null of no jumps —ie, the GBM specification— at the 1% level. Jumps help
explain some of the features of the data.

Matching the moments
The unconditional mean of the jump-diffusion process equals,
H=Hg+Au,= 004

the mean of the GBM process plus the mean of the jump process times the prob-
ability of a jump. The drift of the GBM portion is greater than the unconditional
mean (.07 > .04), but the mean of the jump process is negative and the estimate
of the jump frequency, A, (0.33). is (unbelievably) large and significant. The sum
matches the estimate of the unconditional first moment. almost exactly.

Das and Sundaram, Section I A, give the formulas to calculate the higher
moments. ;

The variance of the jump diffusion process has two components: the normal
times volatility of the GBM component, plus the jump component,

0’ =0, + A, +0,%)= 461

The unconditional variance implied by jump diffusion estimates is only slightly
below the two standard deviation confidence interval for the sample variance (4.66)
in Table'2.1: The estimate of the contribution to volatility of the GBM portion of
the process, oy, drops dramatically from 0:22% to 0. 13% but remains very sig-
nificant. The estimate of the volatility of the jump distribution is fairly large,
0.3%; and significant: The probability:of a discontinuous jump each day is 1/3.

The jump-diffusion model could, but does not generate skewness,

Au +3p,0,.7)
(04" +A0,% +2u,*)*"?

m_moisommg = = -0.0811.

The unconstrained estimate of the skewness in the sample is positive, 0.81,
and significant.

The jump-diffusion model generates 60% of the estimated sample excess
kurtosis,

Apt+6u,’0,% +30,%)

Kurtosis(y) =3 + 5 5 4
») (op” +A0,” +Au,”)”

= 6.75.

which is far below the two standard deviation confidence band of 10.85 + 0.6.
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Discussion

The estimated jump-diffusion process is a poor approximation to the data.
The jump-diffusion process in equations 3.2.2 and 3.2.3 is independently and
identically distributed. To capture the persistence in volatility the estimator tries
to split the data inte high and low volatility regimes. It labels the low <o§:.5.<
regime the GBM process and the high volatility regime the jump. The high esti-
mated jump probability (1/3 each day) is roughly the fraction of the sample with
high volatility. .

3.3 Stochastic volatility jump diffusion
3.3.1 The model

Volatility clustering is an important feature of the data. Stochastic. volatility is
a natural extension of the diffusion models widely applied in the asset pricing
literature. Hull and White (1987); Melino and Turnbull (1990), Wiggins (1987),
and others generalized the traditional GBM' specification by making volatility
stochastic. We add stochastic volatility to the jump-diffusion model, :

mmn Lgdt+ hdW + kdg

dinh® = b(u, —nh*)dt + cdZ 3.3.1
= adt=bInhdt +cdZ

k~N(lt,,0,%)

Here the logarithm of the variance, 4%, follows a mean-reverting process with
an independent Weiner error, dZ.

Estimation technique
Estimating the SVJID model presents two challenges. (1) The model is in
continuous-time, and no closed-form expression exists for the discrete representa-

tion. And, (2) stochastic volatility is a latent variable, and ne closed-form expres-
sion exists for the likelihood function.

3.3.2 Simulation-based estimation

We estimate a stochastic-volatility jump-diffusion process using a simulation-
based technique introduced by McFadden (1989) and Pakes and Pollard (1989).

AP
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The idea behind simulation based estimation is disarmingly simple and extremely
powerful. Mother Nature draws a sample that we observe, e.g., the NOK/GBP
sample in Figute 2.I; from an unobservable data generation process. Maximum
likelihood techniques assume a probability density function for the data generation
process and choose parameters of the density that maximize the likelihood of the
observed samiple.- Simulation-based methods assume the model is the data genera-
tion process. Equations 3.3.1 implicitly define the joint and conditional densities
for retuns and volatility. For a set of parameters, @' ={u', A, u, .0, ,a',b' c'},
one can generate a simulated sample, *(@). Choosing the parameter vector, 8, so
that the simulated sample “matches” the observed sample, gives the parameter
estimates of the data generation process. :

Efficient method of moments

Defining what it means to “match” the sample data defines the estimator. We
use the estimator called “efficient method of moments” by Gallant and Tauchen
(1996) or “indirect inference” by Gourieroux and Monfort (1996) to choese the
parameters.”. The. null hypothesis is that the observed. sample data, ¥,(0), are drawn
from the data generation process in equations 3.1.1 parameterized by the unknown
parameter vector, 0.

The indirect inference methodology chooses an “auxiliary” model, or “score
generator.” The auxiliary model is a descriptive statistic, e.g., an autoregression,
that must capture the key features of the data. Let,

T T . ) ‘
D U3,(8):8) =Y log f*(¥,(6): B)
1=l I3

denote the pseudo-log likelihood function for the auxiliary model. B are the pa-
rameters of the auxiliary model. The scores of the auxiliary model,

¢ . L. dlog £ (3,(0); B)
msiséu M 35 =0

evaluated at the pseudo-maximum likelihood estimates, f3,, using the observed
sample data equal zero by maximization. A
Gallant and Tauchen’s technique is to choose a parameter vector, Oy, that
makes the scores of the auxiliary model evaluated with the simulated data at the
pseudo-maximum likelihood estimate, B;, as close as possible to zero. That is,
choose a set of parameters so that the simulated samples match the observed data.
They show that, under fairly general conditions, the estimates are consistent and,
under more restrictive conditions, efficient. (See Gourieroux and Monfort, Chap-

ter 4).
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. Specifically, simulate the model, equation 3.1.1, for a given parameter vector,
6", to generate a sample, 3%, t = 1, ...,T. Then, evaluate the scores using the
simulated data and the maximum likelihood estimates from the auxiliary model,

T o
. lg(y*1(0): Br)
1=l

If the parameters, 8/, were the parameters of the data generating process and
there were no sampling error, then the scores would equal zero. Increasing the
sample size reduces the sampling error. So increase the sample size by drawing
lots of samples, N,

N T R
Y X L0105y
s=1 r=1

Then find the best parameter vector, 6,
The efficient method of moments estimator chooses the parameter vector, 6,
that makes the weighted average of the scores as close to zero as possible,

- N T > N T .
Bnr(Iy) = arg ming| '3 1,(y"(0): Bp) [ 1, X2 (0B | 332

s=1 1=l 5=1 r=1

where 1, is the information matrix for the auxiliary model.

The information matrix J, can be consistently estimated with a two-pass GMM-
type procedure. In the first pass use an arbitrary positive definite weighting ma-
trix, I;, in 3.3.2 and get consistent, but inefficient parameter estimates, 8. Next,
use the consistent estimates to estimate the information matrix,

, _zﬂ ,,.l> .q:>_
\c HMW.WWTE ;mxmﬂv.\uc.av“mﬂv _

In the second pass use the estimate of “optimal” weighting matrix, m? in the
loss function 3.3.2.

Asymptotic distribution

Gallant and Tauchen (1996) and Gourieroux & Monfort, Section 4.2.3, give
the asymptotic distribution of the estimates,

NT @pr (1) —6,) — NO,W(N, 1))
W(N,I)=(1++)D'I,”'D
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where,

mw
u %%E Pol,

is the partial derivatives of the scores with respect to the parameter vector 0. D can
be computed ==5nanm=v\.

333 m.E:-uﬁmﬂ_ mu:_v_a estimates of the SVJD process

A critical step in the application is choosing a suitable auxiliary model. The
auxiliary model must capture the essential characteristics of the data or it will not
identify® the parameters of the data generation process. And it must be easy to
evaluate the scores, or the problem becomes computationally infeasible.

Auxiliary modelF

In our application we only observe the exchange rate return process. We choose
a mixture of normals to represent the jump-diffusion process and an autoregression
of the squared residuals from this process to capture the volatility clustering. The
auxiliary modef _Bm ne latent variable.

Mixture of nornmals

.Eﬁ EB@ &m.:m_o: process is a mnoBQ:o Brownian motion process with
discrete ;:va occurring at Poisson-distributeéd time-intervals. The EEE are
normally distributed. We simplify the process by only allowing a single jump
each day. The m:dvrmna process can be written as a mixture of two normals with
a binomial mixing distribution. The log-likelihood function is,

——€exp 3
Nﬂo._ 207 mao., 20,

T ' i (v — 2
M 1 Av t_ + A_ v Aw ] .nusm v
where p is the binomial mixing probability and p,, ¢ i» 1= 1,2 are the parameters

of the normal distributions. The mixture of normals is a_m:._a.:ma iid. It does not
capture the volatility clustering.

Autoregression

To capture the volatility clustering we run an autoregression on the squared
residuals from the mixture process. Let u denote the residual from mixture of
normals model. The autoregression,
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10
Inu?=h, +Mv~. Inu’

14
i=1

picks up some of the volatility clustering.’

Simulation model

The discrete version of the stochastic volatility jump diffusion process is,

S.
In W.t \W+F+_=¢+3:\ +kqjy
i
3.35
\e\+_ a 2
In \sw HMIW—:} +0Ng+_ _\nw

where w and z are uncorrelated Gaussian white noise with unit variance, and q is
a Poisson counter that equals one with probability A/5. Here 1/ is the approxi-
mation to dt. The discrete process, equation 3.3.5, tends in distribution to the
continuous process, equation 3.3.1, when 1/ goes to zero at a sufficient rate, see

Guard (1988).

Daily returns

As before, define,

Y =In .m.w.i ; t=1,2,..T

t

as the observed daily returns. In the simulated sample the daily retum is,

1+8/8

Y= XV

j=t+tié

=(InS’ s -MS )+ S 25 ~InSs)+ .. +(In S — 1 5% nis-175)

the cumulative sum of the realizations in the interval [t+1/8 , t+ 8/3] We used
8 =5, so the “daily” return equals the sum of 5 draws from the finer time pro-

CESS.
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Algorithm
Auxiliary Model

1. Obtain the vector of estimates B, ; from the maximization of the log likeli-
hood function of the mixture of normals auxiliary model using the observed
data.

2. Calculate and square the residuals.

3. Estimate the vector of parameters of the AR(10) auxiliary model qu.? and
code the scores.

Simulations

1. Simulate N x T x 8 random variables to be used in the subsequent calculations,
where 8 is the discretization factor,.

2. Choose: (i) initial values for the model’s vector of parameters 0, and (ii) an
arbitrary weighting matrix, /;.

First Pass

B

1.- Use random-variables and 6 to evaluate the scores.
2. Find a new 6, that makes the value of the objective function smaller.

3. lterate on 1-2 until the value of the score is as close to zero as possible, that
is until convergence criterion is reached. This gives consistent parameter es-
timates, 8.

Estimate the Optimal Weighting Matrix

Use the consistent parameter estimates, 8, to estimate the optimal weighting
matrix, /.

Second Pass

1. Use random variables and the consistent estimates, wu to evaluate the scores.

2. Find a new w.. that makes the value of the objective function smaller with the
optimal weighting matrix smaller.

3. TIterate on I-2 until the value of the score is as close to zero as possible, that
is until convergence criterion is reached. This gives optimal parameter esti-
mates, 6.

3
o
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Results

We estimated the stochastic volatility jump diffusion process for the NOK/
GBP returns, using 20 simulated series of length 2180.8 We used a discretization
factor of five, i.e, 8 = 5. The estimation procedure is very computer intensive,
Each run took over an hour. The estimation of the stochastic volatility part seemed
to be fairly robust since the estimation procedure converged to the same estimates
for quite different starting values. The estimate of the diffusion mean was also
stable for varying initial values. The jump-parameters ,, o, and A, however,
frequently converged to different values for different starting values. Jumps, by
definition, occur infrequently and are-hard te identify. Our choice of starting values
for the jump-parameters were based on qualitative reasoning on the number and
size of jumps, and also on the size of the loss function. Estimation of this process
needs good starting values to ensure convergence to a global minimum.

We performed a number of estimations with different starting values to search
for a global minimum. The results of the estimation are summarized in Table 3.3.

TABLE 3.3
ESTIMATION OF A STOCHASTIC VOLATILITY JUMP DIFFUSION PROCESS
T=2180, N=20 a b c N Hy oy A
NOK/GBP
Parameter estimates  0.0333  0.0377 0.2635 0.0680 -0.5805 8.3802  0.0098
Standard error 0.0015 0.0012 0.0075 0.0050 05418 06506 0.0020

All of the coefficients are significant at the 5% level except for the mean of
the jump process.

Matching the moments

The first four unconditional moments of the SVID process can be calculated
from the estimated model parameters and compared to the sample moments.
The mean of the SVJD process

n=u+Aue, =0.062
is larger than sample average of 0.04, but well within the two standard deviation
confidence interval.

The unconditional variance equals the expected stochastic variance plus the
contribution of the jump,

ol =En* + A(u,? +0,%)
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The mean reverting specification for stochastic volatility in equation 3.3.1
implies that the log of h? is normally distributed,

2

2 [
Inh® ~ N .:__..:Num

So the expected value of the stochastic variance is,

2

2 c
Eh I.t__:m +M.~|u. =398
And the variance of the SVID process is;
o2 = 4.66,

within the two-standard deviation confidence interval for the sample unconditional
variance, 4.86, in-Table 2.1.
The skewness calculated from the SVID model,

) Skewness = —0.12,
is not very close to the sample skewness of 0.82.
The SVID generates 90% of the sample excess kurtosis,

" Excess Kurtosis = 9.72,

but, it is still below the two-standard deviation oosmaouon interval for the uncon=
ditional estimate in Table 2.1. i

Specification test

Gallant and Tauchen (1996) and Gourieroux, Monfort, and Renault (1993)
show that under the null hypothesis that the underlying model is correctly speci-
fied the scaled value of the objective function,

N T

~ 2 N, -
E=Tming [ 3, Y11 (0B " 17 | Y D (310 Byr) 3.3.6
1 s=1 1=}

s=t 1=

is distributed asymptotically as y°(g—p). Here q = dim(B) —is the number param-
eters in the auxiliary model, and p = dim(@) - is the number of parameters in the
underlying model.

The SVID model is not rejected at standard confidence levels using the ¥°
test. The scaled minimized value of the loss is £ = 13.71. Our auxiliary model
has 17 parameters and the underlying SVID model! has 7 parameters, which leaves

I e
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10 degrees of freedom. The P value for the cdf, lem. 7,10) = 0.81, shows that
almost twenty percent of the time higher realizations occur by chance.

IV. Monte Carlo

As an informal check on the estimates in Section 11l we did Monte Carlo
experiments. We investigated two questions: (1) (a) how does the distribution of
the estimator with a sample of 2000 compare to its asymptotic distribution, and
(b) is the size of the specification test from the asymptotic distribution approxi-
mately correct for the small sample? And (2) if the data generation process is a
SVID process do estimates of misspecified jump-diffusion mode! ignore the jumps
and try to represent the volatility clustering with two regimes? It tumns out the
answers to these questions are (1) (a) the sample size seems to be adequate for
estimates of stochastic volatility, but not for the estimates of the parameters of the
jump distribution, and (b) the misspecification test rejects too frequently in the
small sample. And (2) the estimates from a misspecified jump-diffusion model
ignore the jump process and estimate instead high and low volatility regimes.

4.1 Experiment

The Monte Carlo allow us to control the environment. We parameterized the
SVID model as follows,

0 0.06 0.28 0o <2 75 0.01

S
| =Bl IS+,

S. o
J
\Nw - 4.1
In \MM_ HW‘W—S#WnTGN\.i _\%
f]

We choose a positively skewed jump process with infrequent (1% on aver-
age) large jumps. The stochastic volatility process is noisy and reverts slowly to
the mean. We set the drift parameters (i, 1) to zero. These are basically nuisance
scale parameters.

We generated 30 samples? of size 10,000 which yields 2000!% “daily” obser-
vations using a & of 5. For each sample we estimated the correctly specified
SVID, did a misspecification test for the model, and estimated the misspecified
JD process.
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4.2 Model parameter estimates

Table Al in the Appendix records the results of the EMM estimates of the
parameters of the SVJD model. Table A2 in the Appendix records the results of
the maximum likelihood estimates of the parameters of the JD model.

_ Figures 4.1 and 4.2 present the data graphically. Each graph shows the den-
sity of the parameter estimator calculated from the 30 Monte Carlo draws —the
“small sample™ density''- and the asymptotic density.

FIGURE 4.1
DENSITIES FOR STOCHASTIC VOLATILITY ESTIMATORS

1000 Asymptotic and Small Sample Distribution

g0 |
800 F
700}
600} -

500 ¢

Density

400 |
300+

200 f

100

ol L s FAERRY L T L
-0.015 -0.01 -0.005 0 0.005 0.01 0015
Estimates of a

140

120 F

100 ¢

0y

Density

20

0 . . i . I
0.045 005 0085 006 0065 007 0075 008 0085 009
Estimates of b

ESTIMATION OF A STOCHASTIC-VOLATILITY JUMP-DIFFUSION MODEL 79

0

60

S0

a0}

Density

30k

s

0.25 0.26 0.27 028 0.29 03 0.3t
Estimates of ¢

Figure 4.1 shows the densities of the estimators for the stochastic volatility
equation. The graphs with the high peaks centered at the true values are the as-
ymptotic densities of the parameter estimates. The small sample densities are
centered at the true values and are more diffuse, but the errors are not large.
When the model is correctly specified 2000 observations seem sufficient to get
reasonable EMM estimates of the stochastic volatility process although the as-
ymptotic confidence intervals are too small.

Figure 4.2 is much more dramatic. It shows the densities of the estimators of
the jump-diffusion equation process for the correctly specified — stochastic vola-
tility-jump diffusion model —and the misspecified— jump diffusion model. The
right panels show the densities of the EMM parameter estimator for the correctly
specified process. The left panels show the densities of the maximum likelihood
estimator for the misspecified model. The graphs in the left panel vividly confirm
our conjecture, the misspecified jump diffusion model essentially splits the data
into two regimes: it labels the high volatility regime the jump and the low vola-
tility the GBM process. The graphs in the right panel indicate that 2000 observa-
tions are not enough to pin down the parameters of the jump distribution in the
correctly specified SVID model. Jumps are unusual events by definition. On av-
erage there are only 20 draws from the jump distribution.

The top panels show the densities for the estimates of the mean of the jump
process. The asymptotic density is centered at the true mean of two. In the left
panel the mode of the density for the misspecified jump diffusion model is zero.
Almost the entire density lies to the left of the true value of two. The JD estima-
tor maximizes the likelihood by splitting the sample into high and low volatility
regimes. The small sample density for the EMM estimator in the right panel is
too good to be believed. All the estimates fall in the dark line centered at two.
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FIGURE 4.2
DENSITIES FOR JUMP-DIFFUSIONS
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The small sample density is much less diffuse than the asymptotic density. Some-
thing is wrong with the Monte Carlo design. Most likely it is the starting val-
ues. We used the true values as initial values in both the nonlinear estimation
procedures. The EMM algorithm never moved from the starting values. In fu-
ture work we will randomize the initial values which will probably give a very
diffuse density.

The middle panel shows the estimator of the volatility of the jump process.
The true volatility is 7.5. The misspecified jump diffusion model badly underes-
timates the true volatility. The mode of the density is centered at four and most
of the density lies to the left of the true value. The right panel shows to EMM
estimates. too tightly grouped around the true value. Again the EMM algorithm
remained at the initial conditions. g .

The bottom panel shows the estimates of jump probability. The misspecified
JD model shown in the left panel badly overestimates the jump probability. The
true probability is 1%. All of the estimates are greater than 1% and the average
is 7.5%. The SVJD model is shown in the right-hand panel. The mode of the
density is slightly less than the correct value of 1%. The density is more diffuse
than the asymptotic density, but most of the estimates are between 1/2% to 1 1/2%.
It seems that 2000 observations are enough to get reasonable estimates of the
probability of a jump (unusual event), but not to pin down the parameters of the

jump distribution.

4.3 Misspecification test

The scaled minimized value of the loss function,
NoT . R N T . <1
E=Tming | 3 N L,/ (0:B)|" 1,7 |3 210710 8;)
s=1 r=i s=b =1

is asymptotically distributed y’(g—p). Here q = 17 —the number of parameters in
the auxiliary model, and p = 7 —the number of parameters in the underlying

model.
The critical values are,

2 - .2 -
%0 = %0010 = 1599
xNe.&,_sn 18.31

xNES,_S =23.21

Figure 4.3 shows the realizations in 30 trials and the asymptotic critical
values.
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FIGURE 4.3

MISSPECIFICATION TEST OF THE SVID-PROCESS
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Number of parameters in underlyling model: 7
Number of parameters in auxiliary model: 17
Degrees of freedom: 17 -7 = 10

Number of rejections at the 10% level: 12 => 40.0%.
Number of rejections at the 5% level: 10 => 33.3%.
Number of rejections ar the 1% level; 4 => 16.7%.

The specification test rejects to frequently.!2 The test rejected 40% of the
time at the 10% significance level, 33.3% of the time at the 5% level, and 16.7%
of the time at the 1% level.

V. Conclusions

High frequency financial returns data display potential jumps, volatility clus-
tering, skewness, and excess kurtosis. The goal is to find a parsimoniously pa-
rameterized model that captures the essential features in the data. The main re-
sults of the paper are: (1) Capturing these features requires a specification that
allows both jumps and stochastic volatility. (2) A specification that only allows
for jumps badly misrepresents the data. And (3) reasonably accurate estimates of
the parameters of the jump distribution require a very large sample.

This paper uses a simulation-based technique to estimate a stochastic-volatil-
ity jump-diffusion (SVID) model of the Norwegian-British exchange rate. Simu-
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lation-based estimation is a relatively new, flexible, and general technique, but it
is computationally intensive. We also estimated the traditional geometric Brown-
ian motion (GBM) and GBM plus a Poisson jump (JD) model by maximum like-
lihood. The SVID model nests the GBM and JD specifications.

We analyze the results by examining how well the models match the first
four unconditional moments of the data and analyze the technique with Monte
Carlo experiments. The GBM specification is distributed normally iid. It has no
skewness or excess kurtosis. The JD specification is also distributed iid, but it'can
be skewed and it has excess kurtosis. The conditional and unconditional moments
of iid distributions are the same, so they cannot match the conditional moments
(volatility clustering.) The SVID specification could match the conditional and
unconditional moments.

Our estimation- results, Section 111, show that the JD and SVJD models match-

three of the four unconditional moments pretty well, Neither model matches the
positive skewness. in the data. The JD model generates 62% of the excess kurtosis
and the SVID model generates 90% of the excess kurtosis. The parameter esti-

mates, however, seem to indicate a serious flaw in the JD model that is confirmed’

by the Monte Carlo experiments. Jumps in financial markets, by definition, are

infrequent events. Volatility clustering is normal. The JD model fits volatility

clustering by segregating the data into a high volatility regime —the jump regime-
and a low volatility regime. It ignores the infrequent jumps. The estimated prob-
ability, of a jump for any day is 1/3 in the JD model. The parameter estimates for
the SVJD model are more reasonable —the probability of a jump is about 1%. A
formal test does not reject the SVJD model. o ‘ ;
The Monte Carlo experiments in Section IV confirm our conjecture that if the
data generation process has both stochastic volatility and jumps, then a jump
diffusion model is a very bad approximation. The Monte Carlo experiments also
show that 2000 observations, which is a fairly large sample for most economic
applications, is not enough to pin down the parameters of the distribution of unusual
events. ’
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APPENDIX
TABLE Al
MONTE CARLO PARAMETER ESTIMATES FOR SVID MODEL
Simulation # a B=1-b [ n My g, A
True values 0 0.94 0.28 0 2 1.5 0.01
! -0.0025 09422 0.2812 -0.0004 1.9894 7.5102 0.0132
2 0.0094  0.9322 . (2769 -0.0002 20003 7.5001 0.0099
3 -0.0077 09381 02793 0.0004 2.0001 7.5001 0.0073
4 ~0.0116 09397 0.2802 0.0003 2.000F 7.5000  0.0073
5 -0.0003  0.9400- 0.2799. . 0.0000." 2.0001 7.5000 0.0101
6 0.0024 09403 0.2801 0.0000 2.0001  7.5001 0.0093
7 -0.0050 o.wuwo 0.2746 -0.0001 1.9996 7.4971 0.0106
8 0.0061" - 0.9396  0.2800. 0.0002: 1.9998- 7.5003 0.0033
9 0.0071 0.9187  0.2749.. -0.0024  2.0008 .. 7.5062 0.0088
10 ~-0.0065 09404 0.2800 0.0002 2.0000 7.500f 0.0087
11 0.0067 = 0.9295 0:2760 -0.0013 19997 7.500t 0.0067
12 ~0.0005° 0:.9388 0.2793  0.0000 1.9999. 7.5001 0.0077
13 0.0002. 09284 0.2743 -0.0032 1.9992  7.5000 0.0126
14 0.0023  0.9407 = 0.2802 -0.0002 2.0000 7.5000 0.0096
15 =~0.0074" 09296 02768 0.0006 1.9969 7.5023 0.0146
16 ) -0.0122 09390 0.2795- 00017  2.0001 7.4998 0.0111
17 -0.0090 ~ 09289 0.2749 -0.0028 2.0002 7.5000 0.0137
18 © -0.0045° 09398 02800 -0.0002 19999 7.5000 0.0100
9 00016 - 0.9436: * 02816 -0.0017 19996 7.5000. 0.0098 -
20 -0.0006 09387 . 0.2795 ~0.0001 2.0000 7.5001 . 0.0047
21 -0.0070 09268 0.2759 -0.0022 1.9999 7.5001 0.0132
22 -0.0059 09374 0.2789 0000k 1.9998 7.5000 0.0078
23 0.0014-. 0.9408 -~ 0.280F -0.0003° 2.0001 -.7.5000- 0.0163
24 -0.0029 0.9363. 0.2757 -0.0009 1.9998 7.5000 0.0099
25 -0.0160° " 09386 0.2799 0.000f 20000 7.4999 0.0196
26 00153 09391 02797 00002 200000 7.4999 0.020}
27 00047 09419 02809 0.0004 1.9997 7.5000 0.0093
28 -0.0011 09509 0.2834 -0.0015 19996 7.5000 0.0175
29 -0.0069 09402 0.2801 -0.0001 1.9999 74999 0.0126
30 0.0132 09432 02808 -0.0013 2.0002 7.5000 0.0065
Average -0.0012 09373 02788 -0.0005 19995 7.5003 0.0107
Standard dev  0.0074 0.0063  0.0024  0.0011 0.0020  0.0020 0.0040
Asymptotic Distribution Oy WN.I),
a 0.00 0.0004
B=1-b 0.94 0.0030
c 0.28 0.0065
M 0.00 0.0028
y 2.00 0.1507
) 750 0.3631
A 0.01 0.0008

[
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TABLE A2

JUMP DIFFUSION ESTIMATES

Simulation i c Hy o; A
True Values 0 2.0 7.5 0.01

1 0.026 0.894 0.141 2.606 0.118
2 -0.005 0.883 0.029 1.992 0.291
3 0.016 0.918 0.034 3216 0.070
4 0.007 0.939 0.256 2.895 0.101
5 0.001 1.067 0.019 5.353 0.049-
6 ~0.008 0.966 1.306 439 0.050
7 -0.025 1.064 -0.048 4.705 0.034
3 —0.004 0.960 -0.595 4316 0.053
9 0.017 1.030 -0.222 3330 0.096
10 ~0.019 1.063 ~0.631 6.041 0.036
11 0.012 0.967 -0.264 2511 0.139
12 0.015 1.075 2.101 6.449 0.028
13 0.000 0.927 -0.347 3.145 0.124
14 0.032 1.056 0.707 422 0.049
15 -0.030 1.051 0262 6.045 0.041
16 -0.001 0966 0025 3377 0.090
17 -0.025 1.041 -0.158 4781 0.050
18 ~0.015 0.982 0:757 4.603 0.046
19 0.031 0904 0.443 3.643 0.062
20 -0.022 0.995 1.367 6.778 0.034
21 —0.011 0.991 0.833 4736 0.050
22 -0.027 0.979 0.452 1015 0.082
23 -0.022 1.133 2222 7.423 0.020
24 -0.031 0.922 0.673 2.854 0.081
25 0.015 1.036 -0.249 4.060 0.050
26 0.004 1.022 0412 4.634 0.049
27 -0.013 0.962 ~0.010 3412 0.122
28 0.029 1.082 0.942 5.952 0.035
29 -0.022 0.930 0.064 2.991 0.090
30 ~0.081 1.123 0310 3.904 0.074

Average -0.005 0.998 0.361 4.280 - 0.074

Standard Deviation 0.025 0.024 0.480 0.290 0.013

e
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Notes

The cxchange rate is the price of a British Pound in Norwegian Kroner.

1 The data are multiplied by 10°,

3 The description of the geometric Brownian motion and jump-diffusion model closcly follows Das
and Sundaram’s (1999) cxtremely clear cxposition.

4 In principle an infinite number of jumps could occur during the day. We sct the maximum number
of jumps per day, 0. at ten which sccms reasonable. Bates and Craine (1999), and Sorion (1988)

] use a maximum of ten for daily data. Jorian presents some evidence that ten is sufficient.
This section is based on Gourieroux and Monfort, Chapter 4.

6 vqo&maw the matrix. D'/;/D must have rank cqual to the number of clements in the parameter
vector

7 Monfardini (1998) cxperimented with auxiliary models for Bom:-_d<n:_=r stochastic volatility pro-
cesses and found that an AR(10) worked well.

M The 10 year samplc has 2180 obscrvations.

Thirty draws are few to draw any strong inferences from. Each run, however, takes several hours
which is why we have only 30 draws.

19 The data have 2180 obscrvations.

The smoothed small sample densities were calculated using a normal kernal estimator.
Monfardini’s more comprehensive: Monte Cirlo study also finds the test rcjects to frequently in
small' samples.
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